This is the reason Demis Hassabis
started DeepMind

A year after it took biologists by surprise, AlphaFold
has changed how researchers work and set
DeepMind on a new course.
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In March 2016 Demis Hassabis, CEO and cofounder of DeepMind, was in



Seoul, South Korea, watching his company'’s Al make history. AlphaGo, a
computer program trained to master the ancient board game Go, played a
five-game match against Lee Sedol, a top Korean pro with the second-
highest number of international championship wins to his name at the time.
Many consider Go the world's most complex board game; it takes years to
master.

Lee predicted he would beat DeepMind's Al in a “landslide,” but AlphaGo
won 4-1. Its victory shocked Go and Al experts alike—and changed the
world's perception of what Al can do.

But while the DeepMind team was celebrating, Hassabis was already
thinking about an even bigger challenge. He remembers standing backstage
with David Silver, who led the development of AlphaGo: I said to him, ‘Now
is the time.""

Watching DeepMind's Al play Go, Hassabis realized that his company's
technology was ready to take on one of the most important and complicated
puzzles in biology, one that researchers had been trying to solve for 50
years: predicting the structure of proteins.

The three-dimensional structure of proteins determines how they behave
and interact in the body. But a large number of important proteins have
structures that biologists still don't know. Using Al to accurately predict them
would offer an invaluable tool to help understand diseases, from cancer to
covid. Proteins are a primary target for many drugs and a key ingredient in
new therapeutics. Quickly unlocking their structures would fast-track the
development of new therapies and vaccines.

In 2020 DeepMind, which is owned by Alphabet, revealed AlphaFold2, an Al
that could predict the shape of proteins down to the nearest atom. “It's the
most complex thing we've ever done,” says Hassabis.

AlphaFold's success is part of a bigger story, too, signaling a change of



direction for the Al lab. The company’s focus is shifting from games to
science, where it hopes to have a bigger real-world impact. Taking on
scientific problems is the culmination of what Hassabis set out to achieve,
and it's what he wants to be known for. “This is the reason | started
DeepMind," he says. "In fact, it's why I've worked my whole career in Al."

Hassabis has been thinking about proteins on and off for 25 years. He was
introduced to the problem when he was an undergraduate at the University
of Cambridge in the 1990s. “A friend of mine there was obsessed with this
problem,” he says. "He would bring it up at any opportunity—in the bar,
playing pool—telling me if we could just crack protein folding, it would be
transformational for biology. His passion always stuck with me."

That friend was Tim Stevens, who is now a Cambridge researcher working
on protein structures. “Proteins are the molecular machines that make life on
earth work,” Stevens says.

Nearly everything your body does, it does with proteins: they digest food,
contract muscles, fire neurons, detect light, power immune responses, and
much more. Understanding what individual proteins do is therefore crucial
for understanding how bodies work, what happens when they don't, and
how to fix them.

A protein is made up of a ribbon of amino acids, which chemical forces fold
up into a knot of complex twists and twirls. The resulting 3D shape
determines what it does. For example, hemoglobin, a protein that ferries
oxygen around the body and gives blood its red color, is shaped like a little
pouch, which lets it pick up oxygen molecules in the lungs. The structure of
SARS-CoV-2's spike protein lets the virus hook onto your cells.



A model generated by AlphaFold shows how amino acids fold to form a protein.

COURTESY OF DEEPMIND

The catch is that it's hard to figure out a protein’s structure—and thus its
function—from the ribbon of amino acids. An unfolded ribbon can take
1073090 possible forms, a number on the order of all the possible moves in a
game of Go.

Predicting this structure in a lab, using techniques such as x-ray
crystallography, is painstaking work. Entire PhDs have been spent working
out the folds of a single protein. The long-running CASP (Critical
Assessment of Structure Prediction) competition was set up in 1994 to
speed things up by pitting computerized prediction methods against each
other every two years. But no technique ever came close to matching the
accuracy of lab work. By 2016, progress had been flatlining for a decade.

Within months of its AlphaGo success in 2016, DeepMind hired a handful of



biologists and set up a small interdisciplinary team to tackle protein folding.
The first glimpse of what they were working on came in 2018, when
DeepMind won CASP 13, outperforming other techniques by a significant
margin. But beyond the world of biology, few paid much attention.

That changed when AlphaFold2 came out two years later. Its landslide
victory in CASP 14 marked the first time an Al had predicted protein
structure with an accuracy matching that of models produced in an
experimental lab—often with margins of error just the width of an atom.
Biologists were stunned by just how good it was.

Watching AlphaGo play in Seoul, Hassabis says, he'd been reminded of an
online game called FoldlIt, which a team led by David Baker, a leading protein
researcher at the University of Washington, released in 2008. FoldIt asked
players to explore protein structures, represented as 3D images on their
screens, by folding them up in different ways. With many people playing, the
researchers behind the game hoped, some data about the probable shapes
of certain proteins might emerge. It worked, and FoldlIt players even
contributed to a handful of new discoveries.

“If we can mimic the pinnacle of intuition in Go,
then why couldn’t we map that across to
proteins?”

Hassabis played that game when he was a postdoc at MIT in his 20s. He was
struck by the way basic human intuition could lead to real breakthroughs,
whether making a move in Go or finding a new configuration in Foldlt.

“I was thinking about what we had actually done with AlphaGo," says
Hassabis. “We'd mimicked the intuition of incredible Go masters. | thought, if
we can mimic the pinnacle of intuition in Go, then why couldn’t we map that
across to proteins?”
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The two problems weren't so different, in a way. Like Go, protein folding is a
problem with such vast combinatorial complexity that brute-force
computational methods are no match. Another thing Go and protein folding
have in common is the availability of lots of data about how the problem
could be solved. AlphaGo used an endless history of its own past games;
AlphaFold used existing protein structures from the Protein Data Bank, an
international database of solved structures that biologists have been adding
to for decades.

AlphaFold2 uses attention networks, a standard deep-learning technique
that lets an Al focus on specific parts of its input data. This tech underpins
language models like GPT-3, where it directs the neural network to relevant
words in a sentence. Similarly, AlphaFold2 is directed to relevant amino acids
in a sequence, such as pairs that might sit together in a folded structure.
“They wiped the floor with the CASP competition by bringing together all
these things biologists have been pushing toward for decades and then just
acing the Al," says Stevens.

Over the past year, AlphaFold2 has started having an impact. DeepMind has
published a detailed description of how the system works and released the
source code. It has also set up a public database with the European
Bioinformatics Institute that it is filling with new protein structures as the Al
predicts them. The database currently has around 800,000 entries, and
DeepMind says it will add more than 100 million—nearly every protein known
to science—in the next year.

A lot of researchers still don't fully grasp what DeepMind has done, says
Charlotte Deane, chief scientist at Exscientia, an Al drug discovery company
based in the UK, and head of the protein informatics lab at the University of
Oxford. Deane was one of the reviewers of the paper that DeepMind
published on AlphaFold in the scientific journal Nature last year. "“It's
changed the questions you can ask," she says.

A handful of teams around the world have started using AlphaFold in work on
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antibiotic resistance, cancer, covid, and more. Roland Dunbrack at the Fox
Chase Cancer Center in Philadelphia is one early adopter. He leads a team
that has been using computers to predict protein structures for years. Other
teams at the lab then use these structures to guide their experiments.

AlphaFold has introduced an unprecedented level of accuracy to Dunbrack's
work. “They are accurate enough to make biological judgments from, to
interpret mutations in a cancer gene," he says of its predictions. “We always
tried to do that with computer-generated models before, but we were often
wrong.”

When colleagues ask him to model proteins, Dunbrack says, he can now be
more confident in what he gives them. Otherwise, he says, "I get really
nervous, worried that they'll come back to me and say, ‘We wasted all this
money and your model was terrible—it didn’t work.”

AlphaFold can still make mistakes, but when it works well it can be hard to
tell the difference between its predictions and a structure produced in the
lab, says Dunbrack. He runs AlphaFold predictions on a computer platform
called ColabFold, hosted by Harvard University and running on Google
GPUs. "Every night | set one up before | go to sleep, and they take a few
hours to run,” he says.

“It's a super useful tool that everybody in my lab is using,” says Kliment
Verba, a structural biologist at the University of California, San Francisco.
Verba mostly works on cancer, but in the early weeks of the covid-19
pandemic, he joined a loose consortium of researchers studying the SARS-
CoV-2 virus. In particular, he wanted to figure out how its proteins hijacked
host proteins.

Verba and his colleagues had produced part of the structure for the viral
protein they were interested in, but they were missing a piece. Many proteins
have multiple domains—densely folded sections, a few hundred amino acids
long, that can each have a separate function. One domain might bind to



DNA, another might bind to another protein, and so on. “They're
multiheaded beasts,” says Dunbrack.

Structurally, domains are like knots in a rope, connected by loose, looping
strands that flop around. In the protein he was studying, Verba's team had
figured out the rough shape of the rope but not the detailed structure of all
the knots. Without that detail, there was little they could say about how it
worked.

They realized, though, that this protein was one of those DeepMind had
already run through AlphaFold and shared online. AlphaFold's prediction
wasn't perfect; the looping strands weren't quite right. But it had the shape
of the protein’s four domains. The researchers took AlphaFold’s predictions
for the domains and lined them up with the rough shape they had. It was
remarkably close.

“I remember that moment when | saw it fit,” says Verba. "It was amazing. We
were now the only ones in the world with the full structure.” They published
their findings soon after.

Verba thinks AlphaFold's strength lies in finding structures for proteins that
have not yet been fully studied. “Many of the proteins we care about have
been studied for decades,” he says. “People have spent careers chipping
away at them, so we have a fairly good idea what they look like." But that still
leaves a lot of uncharted territory.

Verba is interested in kinases, for example. Kinases are enzymes that play a
crucial role in regulating the normal function of cells. If they stop working
properly, they can cause cancer. Only around half of the 500 or so kinases in
the human body are well understood; the remainder is known as the dark
kinome.

Researchers like Verba and Dunbrack are interested in developing cancer
drugs that target the kinome. But this is where AlphaFold’s limitations kick



in.

Because working out the structure of a protein in the lab is costly, it is
typically done only once the protein has been picked as a promising
candidate—which might be months into the drug discovery process. The
hope, Deane says, is that AlphaFold could reverse that sequence, making
the pipeline move faster. “Now | can start with the structure—I can identify
where it has pockets on the surface, places where | can bind drug
molecules,” she says.

“A ot of the time these small transformations are
the crux of biological function.”

Yet—as Deane acknowledges—you need more than a static structure to fully
understand how a drug and a protein might interact. Proteins do not stay
still: their structures can cycle through subtle reconfigurations. “A lot of the
time these small transformations are the crux of biological function,” says
Verba.

What's more, a protein may be open to receiving a drug in one state but not
others. And judging from what researchers are seeing so far, AlphaFold
appears to predict the most common state of these structures, which may
not be the state that is important for drug development.

Proteins can also change shape when drugs bind to them, which can affect
how the drug works. In the worst-case scenario, a drug binding to a protein
can have unpredictable knock-on effects on adjoining proteins, potentially
even reversing what the drug was designed to do—for example, activating
rather than inhibiting some function.

Ola Engkuvist, head of molecular Al in discovery sciences at AstraZeneca,
thinks that Al-generated structures will help identify drug targets eventually
—but not yet. “To be transformational, AlphaFold needs to be followed by



better computational methods to understand protein dynamics and handle
larger protein complexes,” he says.

DeepMind plans to address many of these issues in the next version of the
program. One line of work is to generate multiple variations of a protein's
shape to try to capture its dynamics. The way a protein moves is governed
by complex chemistry and physics, so a full, moving model may require
feeding AlphaFold large amounts of extra information about this process. A
downside of this approach could be that the information might act as a
constraint, degrading the tool's predictive abilities.

Last summer, DeepMind released AlphaFold Multimer, which is designed to
predict the structure of protein complexes—superstructures made of
multiple proteins clumped together. But it is much less accurate than
AlphaFold, and prone to more glaring errors.

Stupid mistakes are a feature of even the best Al. AlphaGo made a basic
error in the one game it lost to Lee Sedol, says Hassabis. “You can think of it
a bit like a bug,” he says. “But the problem is that it's a bug in its knowledge
—you can't just go in and debug it."

That's because you can't easily tinker with a neural network without
fundamentally affecting how it works. "Hard-coded fixes damage an Al's
ability to learn, because how does it know when to use them?” says
Hassabis. “It goes against the point of learning.”

Instead, DeepMind is gathering examples of AlphaFold’'s worst mistakes and
training it to handle them properly. Hassabis wants researchers to break
AlphaFold—to find what doesn’t work—and share the results with his team
so that they can make the next AlphaFold even better.

With AlphaFold, DeepMind is starting a new chapter. The company is
investing in a team called Al for Science. It has produced a flurry of
publications in the last few months, in fields from weather prediction to



