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Beyond prediction: Using big data

for policy problems
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Machine-learning prediction methods have been extremely productive in applications
ranging from medicine to allocating fire and health inspectors in cities. However, there are
a number of gaps between making a prediction and making a decision, and underlying
assumptions need to be understood in order to optimize data-driven decision-making.

recent explosion of analysis in science,

industry, and government seeks to use

“big data” for a variety of problems. In-

creasingly, big-data applications make use

of the toolbox from supervised machine
learning (SML), in which software programs
take as input training data sets and estimate or
“learn” parameters that can be used to make
predictions on new data. In describing the po-
tential of SML for clinical medicine, Obermeyer
et al. (I) have commented that “Machine learn-
ing...approaches problems as a doctor progress-
ing through residency might: by learning rules
from data. Starting with patient-level observa-
tions, algorithms sift through vast numbers of
variables, looking for combinations that reliably
predict outcomes...where machine learning shines
is in handling enormous numbers of predictors—
sometimes, remarkably, more predictors than
observations—and combining them in nonlinear
and highly interactive ways.”

SML techniques emerged primarily from com-
puter science and engineering, and they have dif-
fused widely in engineering applications such as
search engines and image classification. More re-
cently, the number of applications of SML to sci-
entific and policy problems outside of computer
science and engineering has grown. In the public
sector, SML models have been introduced in
criminal justice [e.g, (2)]; for predicting economic
well-being at a granular level using mobile data,
satellite imagery, or Google Street View (3, 4, 5);
and for allocating fire and health inspectors in
cities (6), as well as a variety of other urban appli-
cations (7). The techniques have also been used to
classify the political bias of text (8) or the sentiment
of reviews (9). In medicine, SML-based predictive
algorithms have been implemented in hospitals to
prioritize patients for medical interventions based
on their predicted risk of complications (10), and
in a wide variety of additional medical applica-
tions, including personalized medicine (7).

The rapid diffusion of SML methods can be
in part attributed to advances in availability of
data, computational techniques and resources,
data analysis techniques, and open-source soft-
ware. Another factor is the simplicity of the prob-
lems the techniques are designed to solve. Very
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few assumptions are required for off-the-shelf
prediction techniques to work: The environment
must be stable, and the units whose behavior is
being studied should not interact or “interfere” with
one another. In many applications, SML tech-
niques can be successfully applied by data scien-
tists with little knowledge of the problem domain.
For example, the company Kaggle hosts predic-
tion competitions (www.kaggle.com/competitions)
in which a sponsor provides a data set, and con-
testants around the world can submit entries,
often predicting successfully despite limited con-
text about the problem.

However, much less attention has been paid
to the limitations of pure prediction methods.
When SML applications are used “off the shelf”
without understanding the underlying assump-
tions or ensuring that conditions like stability
are met, then the validity and usefulness of
the conclusions can be compromised. A deeper
question concerns whether a given problem
can be solved using only techniques for pre-
diction, or whether statistical approaches to
estimating the causal effect of an intervention
are required.

Kleinberg et al. (11) highlight a case in which
off-the-shelf SML techniques can partially, but
not fully, address a resource allocation problem

in health policy. They consider the problem of
deciding which otherwise-eligible patients
should not be given hip replacement surgery
through Medicare. They use SML to predict the
probability that a candidate for joint replace-
ment would die within a year from other causes,
and identify patients who are at particularly
high risk and should not receive joint replace-
ment surgery. They argue that “benefits accrue
over time, so surgery only makes sense if some-
one lives long enough to enjoy them; joint re-
placement for someone who dies soon afterward
is futile—a waste of money and an unnecessary
painful imposition on the last few months of
life” (p. 493). In this class of problems, the ra-
tionale for focusing on prediction is clear; the
average effect of an intervention is known to be
negative in certain states of the world (if the
patient will die soon), so that predicting the state
of the world is sufficient for the decision to forgo
the surgery. However, the authors highlight the
fact that pure prediction methods do not an-
swer the more complex question of which patients
should be given the highest priority to receive
surgery, among those who are likely to survive
more than a year. The full resource allocation
problem requires estimates of heterogeneity in
the effect of surgery, for example, because some
patients may have higher rates of surgical com-
plications than others. The question of optimally
allocating a scarce resource (hip replacement sur-
gery) to the patients for whom the causal effect
of the surgery on patient welfare is highestis a
much harder problem, one that generally re-
quires answering counterfactual questions: What
would happen under a variety of alternative as-
signment policies, policies that have never been
implemented before?

In another resource allocation example, it is
common in industry to use SML to predict the
probability of customer “churn,” in which a cus-
tomer abandons a company or service, and the
company responds by allocating interventions

Fig. 1. What is the best way to allocate food-safety inspectors?
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(such as outreach by salespeople) to those cus-
tomers at highest risk of churn. Ascarza (12)
documented firms following this type of prac-
tice, and then used methods from the causal
inference literature to provide empirical evidence
that allocating resources according to a simplis-
tic predictive model is not optimal. The overlap
between the group with highest risk of churn-
ing and the group who would respond most to
interventions was only 50%. Thus, treating the
problem of retaining customers as if it were a
prediction problem yielded lower payoffs to
the firm.

A public-sector resource allocation problem is
the question of how a city should allocate build-
ing inspectors optimally to minimize safety or
health violations. New York City’s
Firecast algorithm allocates fire
inspectors according to the pre-
dicted probability of a violation
being detected upon inspection,
and Glaeser et al. (6) developed
and implemented a similar sys-
tem for allocating health inspec-
tors to restaurants in Boston,
with preliminary estimates show-
ing a 30 to 50% improvement
in the number of violations
found per inspection.

The decision problem of how
to optimally allocate inspectors
would fall squarely in the pre-
diction domain if the following
simplifying assumptions were
true: (i) The behavior of the
individual establishments being
inspected is fixed; and (ii) when
problems are identified, they
can be immediately fixed at a
low cost that does not vary across
units. Knowing which establish-
ments are more likely to have
violations would be equivalent
to knowing which ones should
be inspected. However, a more realistic setting
incorporates heterogeneity across units: A build-
ing may be at higher risk of fire due to old
wiring, but other considerations make it diffi-
cult to replace the wiring. Other units may have
lower predicted risk, but it may be easy and in-
expensive to make substantial improvements.
Another consideration is responsiveness; if vi-
olations entail fines, some firms may be more
sensitive to the prospect of fines than others.
Overall, solving the city’s inspection allocation
problem involves estimating the causal effect of
inspection policies: What is the expected im-
provement in overall quality of units (e.g., food
poisoning rates) in the city under a new inspector
allocation regime?

Thus, prediction and causal inference are
distinct (though closely related) problems. Out-
side of randomized experiments, causal inference
is only possible when the analyst makes assumpt-
ions beyond those required for prediction methods,
assumptions that typically are not directly
testable and thus require domain expertise to
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verify. A large literature in causal inference that
spans multiple disciplines (social science, com-
puter science, medicine, statistics, epidemiology,
and engineering) has emerged to analyze this type
of problem [see Imbens and Rubin (I3) for a
review]. One approach to estimating causal effects
using data that were not generated from a
randomized experiment is to adjust for factors
that led to differential inspection probabilities
in the past, and then to estimate the effect of
inspection on restaurant-specific health outcomes
(perhaps using audits). Recent methodological
advances focus on adjusting for observed con-
founders in big-data applications [e.g., (14-16)].
A theme in this literature is that off-the-shelf
prediction methods from SML lead to biased

Fig. 2. What is the causal effect of inspections?

estimates of causal effects, but that consistent
and efficient estimation of causal effects can be
achieved by modifying SML techniques.
Another approach to estimating causal effects is
to make use of designed experiments. Blake et al.
(17) used a city-based difference-in-difference meth-
odology (implementing a new policy in a ran-
domly selected set of “treatment” cities while
controlling for time trends by also measuring
outcomes in a set of “control” cities) to evaluate
the causal effect of search advertising for eBay.
Like many search advertisers, eBay relied on his-
torical data to measure the benefit of search
advertising, but it did not attempt to separate
correlation from causality. Rather, eBay mea-
sured advertising effectiveness with a simple
predictive model in which clicks were used to
predict sales, finding that the return on in-
vestment for advertising clicks (that is, the
ratio of eBay sales attributed to clicks to the
cost of the advertising clicks) was about 1400%.
Using the experimental data to measure the
causal effect of the advertisements, the authors

found that the true return on investment was
-63%. Part of the gap between the naive anal-
ysis and the results from the experiment arose
because many people who clicked on eBay search
advertisements would have purchased items
from eBay, anyway. Although a click on an eBay
ad was a strong predictor of a sale—consumers
typically purchased right after clicking—the
experiment revealed that a click did not have
nearly as large a causal effect, because the con-
sumers who clicked were likely to purchase,
anyway.

Beyond resource allocation problems, the dis-
tinction between pure prediction and causal in-
ference has been the subject of decades of
odological and empirical research in many dis-
ciplines. Economics has placed
particular focus on this distinc-
tion, perhaps because some of
the most fundamental economic
questions, such as how con-
sumer demand varies with price,
cannot be answered with purely
predictive models. For exam-
ple, how much of a product would
consumers buy at different (hy-
pothetical) price levels? Although
it might seem straightforward
to use off-the-shelf SML to pre-
dict the outcome “quantity sold”
with the price level as an ex-
planatory “feature,” in practice,
this approach fails badly if it is
used as a method to estimate
the causal effect of price on quan-
tity sold. Suppose that an analyst
has historical data from hotel
prices and occupancy rates. Typ-
ically, prices and occupancy are
positively correlated because the
existing pricing policy for ho-
tels (often implemented through
yield management software) spe-
cifies that hotels raise their prices
as they become more fully booked. Off-the-shelf
applications of SML techniques are designed to
answer the following type of question: If an
analyst is told that on a particular day, prices
were unusually high, what is the best prediction
of occupancy on that day? The correct answer
is that occupancy is likely to be high. By contrast,
the question of the effect of changing the pricing
policy is a causal question, and common exper-
ience indicates that if the firm implemented a new
policy to systematically raise prices by 5% every-
where, it would be unlikely to sell more hotel rooms.
A different set of statistical techniques is required
to answer this question, perhaps exploiting “natural
experiments” in the data or an approach known
as “instrumental variables” [see (13) for a review
of these techniques]. Recently, several authors
have combined advances from SML with this
traditionally “small data” set of methods, both for
estimating average causal effects (18) and for
personalized estimates of causal effects (19).

Beyond the distinction between prediction
and causal inference, methods optimized solely
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for prediction also do not account for other
factors that may be important in data-driven
policy analysis or resource allocation. For ex-
ample, incentives and manipulability can be
important. If a building or restaurant owner
anticipates a low probability of being inspected
based on these characteristics, he or she may
reduce efforts for safety.

In an example of data-driven policy where
manipulability played a role, the market pricing
system (MPS) of British Columbia is used to
set prices for harvest of timber from government-
owned land that has been allocated to timber
companies under long-term leases. The MPS
builds a predictive model using data from tim-
ber sold at auctions to predict the prices that
would have been obtained if a tract harvested
under a long-term lease had instead been sold
via auction. However, a lease-holder could po-
tentially have an incentive to bid artificially
low in auctions in order to influence the pre-
dicted prices for timber harvested under the
long-term lease and thus lower their costs of
harvesting from long-term leases. As part of
the model selection process, the predictive mod-
el for MPS was subject to simulations to assess
its manipulability by any single large timber
company (20). The model implemented was
not the model with the best possible predictive
power to achieve the desired robustness against
manipulability.

A number of additional considerations arise
when using statistical models in practice. It is
sometimes important for stakeholders to un-
derstand the reason that a decision has been
made, or decision-makers may need to commit
a decision rule to memory (e.g., doctors). Trans-
parency and interpretability considerations might
lead analysts to sacrifice predictive power in favor
of simplicity of a model. Another consideration
is fairness, or discrimination. Consumer protec-
tion laws for lending in the United States pro-
hibit practices that discriminate on the basis of
race. Firms might wish to use SML methods to
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select among job applicants for interviews; but
they might wish to incorporate diversity objec-
tives in the algorithm, or at least prevent in-
equities by gender or race. These issues have
received recent attention in the literature on
SML [e.g., (2D)].

Overall, for big data to achieve its full po-
tential in business, science, and policy, multi-
disciplinary approaches are needed that build
on new computational algorithms from the
SML literature, but also that bring in the meth-
ods and practical learning from decades of multi-
disciplinary research using empirical evidence
to inform policy. A nascent but rapidly growing
body of research takes this approach: For ex-
ample, the International Conference on Machine
Learning (ICML) in 2016 held separate work-
shops on causal inference, interpretability, and
reliability of SML methods, while multidiscipli-
nary research teams at Google (22), Facebook
(23), and Microsoft (24) have made available
toolkits with scalable algorithms for causal in-
ference, experimental design, and the estima-
tion of optimal resource allocation policies. As
the SML research community and other dis-
ciplines continue to join together in pursuit of
solutions to real-world policy problems using big
data, we expect that there will be even greater
opportunities for methodological advances, as
well as successful implementations, of data-
driven policy.
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