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When Chinese officials posted the sequence of the coronavirus SARS-CoV-
2 on 10 January 2020, it triggered a race among vaccine manufacturers.
Historically, this process has taken years, even decades. The vaccine against
the Ebola virus, which zoomed through human trials in a record-breaking 5
years, took more than twice as long in preclinical development. However,
SARS-CoV-2 was different. Within a few hours, several companies had
developed potential vaccine targets.

Understanding the immune system is a tall order, says Maggie Ackerman, an
immunologist at Dartmouth College, in Hanover, New Hampshire. It is why so
many scientists like her have turned to computational and informatics
approaches, mathematical models that have become so sophisticated they
can predict which parts of a novel pathogen will be recognized by B cells
and T cells or create targeted immunotherapies against tumor cells.

When the novel coronavirus struck, years of work on these models meant
that scientists were poised to respond immediately. By being able to predict
the exact parts of SARS-CoV-2 that would elicit an immune response,
scientists have been able to sprint through the early stages of vaccine
development and into animal trials.

“These approaches offer incredible speed at getting from genetic sequence
to a candidate vaccine. Nothing can compete with that,” says Ackermann.



It all started with a copy–paste

One of the main reasons scientists first turned to computational tools to
understand the immune system is that they needed to. Millions of years of
natural selection have meant that the immune system has created multiple
layers of defense with the redundancy and adaptability to meet nearly any
threat it is faced with. The end result is an organ system that, even today,
researchers still do not fully understand.

Because most of the early work in immunology was in mice, there is detailed
understanding of the mouse immune system, explains Mark Davis, a
computational immunologist at Stanford University, in California. However,
understanding what is going on in humans is another story.

“Mathematical models, statistical approaches, and machine learning are the
only way you can make meaning out of so much data,” says Maia Smith, a
bioinformatics engineer at AbCellera in Vancouver, Canada.

As the field of bioinformatics grew, immunologists began borrowing some
techniques used by geneticists and systems biologists, which ultimately
created the subfield of computational or systems immunology.

These mathematical models started off with relatively simple ordinary and
partial differential equations that let scientists describe and predict how a
system changes over time and space, says Filippo Castiglione, a
computational immunologist at the Institute for Computing Applications at
the National Research Council of Italy.

The mid-1990s were a turning point for the field of immunology. At the time,
the escalating human immunodeficiency virus (HIV)–AIDS crisis and early
DNA sequencing results from the Human Genome Project had begun to
generate large datasets on immune functioning. This gave immunologists a
newfound urgency for addressing the deadly pandemic, as well as a starting
point for developing their models, according to Annie De Groot, chief



executive officer and founder of the computational immunology company
EpiVax in Providence, Rhode Island.

The problem was that when immunologist started in this field, it was very
difficult to get funded, because people just did not believe that computers
could do this, De Groot says.

To be fair, compared with the sophistication of current tools, De Groot’s
initial computational algorithms were rather simple. At the time, she was a
postdoc in the lab of Jay Berzofsky and was working to understand how T
cells recognize pathogens. As soon as Helicobacter pylori was first
sequenced, in 1997, she simply copied and pasted the sequence into a word
processor and ran some macro, looking to identify peptides recognized by
major histocompatibility complex (MHC) class II proteins ― and it worked.

De Groot continued to search the literature for more peptides and MHC class
II proteins to be able to improve the precision of her computations as she
started her own lab working on tuberculosis and HIV at Brown University.
What resulted was EpiMatrix, a computer algorithm that breaks down a
pathogen’s protein sequences into chunks that are ten amino acids in length,
and then ranks them by their likelihood of binding to a given MHC protein.
The output is an estimated binding probability that compares the algorithm’s
predictions with its score of known MHC binders and non-binders.

When De Groot tested the program in Mycobacterium tuberculosis to
identify proteins that might make good vaccine candidates, she was able to
reduce the number of epitopes by 99.8%, from 1.6 million to 3,000. The
algorithm also identified conserved HIV epitopes that are recognized by
MHC proteins.

Making sense of all the data

As De Groot toiled away to find MHC class II epitopes, other researchers
were using differential equations to identify a target for a universal vaccine



against influenza, a task that became more urgent with the 2009 H1N1
influenza pandemic. Both HIV and the influenza virus mutate at staggering
rates, which means that vaccinologists had to try to find epitopes that
remain constant over time and elicit a strong and durable immune response.
It was a tall order, since those epitopes most recognized by the immune
system were also the most variable.

However, scientists at Oxford University created a set of equations to model
the evolution of seasonal influenza virus from year to year and found that
they could identify epitopes that would fit both those criteria, which made
them good candidates for a universal vaccine against influenza. Equations
predicted that these epitopes would wax and wane over time as populations
developed immunity, something the researchers verified in human samples
in a 2018 paper in Nature Communications. A US-based startup, Blue Water
Vaccines, licensed this strategy and is using it to develop a universal vaccine
against influenza.

Justin Bahl, an epidemiologist at the University of Georgia, in Athens,
Georgia, also took clues from evolutionary biology to try and trace the
evolution of influenza virus strains and see if he could identify a common
ancestor that might be useful in vaccine design. Rather than modeling the
future evolution of the genetic code of influenza virus, Bahl instead tried to
predict what the virus’s RNA sequences and protein structures looked like in
the past.

“If we know what’s conserved in all of these different influenza viruses, we
can combine that with what’s conserved in the human body response,” Bahl
says.

What these volumes of data perhaps illustrated best was the heterogeneity
of immune responses. The vaccine against hepatitis B virus is often given at
birth, and while some people need only one dose to be fully protected,
others need two or three, says Richard Scheuermann of the J. Craig Venter
Institute in San Diego, California. He and his colleagues studied immune cells



from samples collected before and after vaccination and used single-cell
RNA sequencing followed by machine learning to identify what contributes
to different vaccine responses. Computational methods, Scheuermann says,
helped them narrow down a number of candidate genes expressed
specifically by dendritic cells. “We ended up with only a dozen genes to
evaluate, which is a much more specific signal,” he says.

The answer, Scheurmann’s team found, was the number of myeloid dendritic
cells expressing a gene called NDRG2, according to a 2018 study in the
Journal of Immunology. With these results, Scheuermann says, he can
investigate whether adjuvants designed to boost the immune response to a
vaccine will affect the activity of NDRG2 in myeloid dendritic cells.

Instead of relying on mathematical models based on differential equations,
Castiglione and other scientists have begun using agent-based models.
These models treat each cell or other entity as an agent that is defined by a
set of rules that also incorporate some randomness, with the goal of
determining their effects on the system as a whole. The result is a
distribution of probabilities for a variety of outcomes, instead of an estimate
of average behavior. Combining this with neural networks and other
machine-learning techniques has allowed Castiglione to predict the
existence of a phenomenon called ‘memory anti-naive’, in which cross-
reactive memory T cells inadvertently inhibit the formation of a more
effective T cell response to a secondary infection.

Computational immunology can fast-forward the
research, but is not a shortcut

These computational approaches are especially good at generating
hypotheses, according to bioinformatician Sagi Shapira of Columbia
University, in New York, New York. He points to work by Peter Howley of
Harvard University, in Cambridge, Massachusetts, who asked why certain
strains of human papillomavirus are associated with cervical cancer and



others are not. Bioinformatics data showed that equivalent proteins in
different human papillomavirus strains bind to a different constellation of
host proteins in the cell. Howley hypothesized that these differences could
explain why some strains cause cancer. It allowed Howley and other
immunologists to hone their hypotheses more finely before diving into
expensive and time-consuming ‘wet lab work’.

When it comes to designing vaccines and antibody therapies, building a
viable candidate can take years and cost tens of millions of dollars. By
developing and investing in the advanced computational tools used by
scientists at EpiVax, Moderna, AbCellera and other companies, this process
can be compressed into hours instead of years. Although De Groot’s
databases and mathematical modeling have grown exponentially more
sophisticated, compared with her original Microsoft Word–based endeavors,
she still keeps the recognition of peptides by MHC class II proteins at the
center of her analysis. However, she also looks for sequences that may alert
regulatory T cells and dial back the immune response, as well as modeling
how the use of two different peptides might affect immunogenicity. At
AbCellera, scientists have whittled down the billions of antibodies found in a
sample of blood from someone who has recovered from COVID-19 to a top
few candidate antibodies from which an effective blocking epitope could be
identified. The key to this process has been the start-up’s
immunoinformatics tools that can link antibody to antigen. Developing their
antibody therapy even further will occur in collaboration with Eli Lilly.

Shapira also cautions that no in silico analysis, no matter how high-quality
the input and how exacting the computational algorithms, will ever be a
substitute for experimental data. Many hypotheses and many vaccines
against malaria and HIV, and even universal vaccines against influenza, have
looked good on paper but been a flop when tested in humans. There is also
the ongoing issue of reproducibility, an issue that has plagued much of
science but has hit many ‘-omics’ studies especially hard.



“There’s no shortcut to actually doing the experiment,” Shapira says.

The testing stage is where both EpiVax and AbCellera are at with their
COVID-19 response. AbCellera began phase 1 human trials of a SARS-CoV-
2-neutralizing monoclonal antibody called ‘LY-CoV555’ that targets the
virus’s spike protein. Also, EpiVax is collaborating with several labs to
develop candidate vaccines, some of which have already begun preclinical
studies. Moreover, AbCellera has teamed up with Eli Lilly to identify the best
antibodies from the blood of patients who have recovered from SARS-CoV-2
infection to create a monoclonal antibody therapeutic. To De Groot, more
than two decades of work in computational immunology was what enabled
her company to be able to develop a vaccine candidate in just a few hours.

“With the tools that we have, we can pivot to whatever seems to be
capturing public interest at the moment,” De Groot says, “and eventually we
can address those really big problems.”
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