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21.1 Introduction

I believe that machine learning (ML) will have a dramatic impact on the 
fi eld of economics within a short time frame. Indeed, the impact of ML on 
economics is already well underway, and so it is perhaps not too diffi  cult to 
predict some of the eff ects.

The chapter begins by stating the defi nition of ML that I will use in this 
chapter, describing its strengths and weaknesses, and contrasting ML with 
traditional econometrics tools for causal inference, which is a primary focus 
of the empirical economics literature. Next, I review some applications of 
ML in economics where ML can be used off  the shelf: the use case in eco-
nomics is essentially the same use case that the ML tools were designed 
and optimized for. I then review “prediction policy” problems (Kleinberg 
et al. 2015), where prediction tools have been embedded in the context of 
economic decision- making. Then, I provide an overview of the questions 
considered and early themes of the emerging literature in econometrics and 
statistics combining machine learning and causal inference, a literature that 
is providing insights and theoretical results that are novel from the per-
spective of both ML and statistics/ econometrics. Finally, I step back and 

21
The Impact of Machine 
Learning on Economics

Susan Athey

Susan Athey is the Economics of Technology Professor at Stanford University Graduate 
School of Business and a research associate of the National Bureau of Economic Research.

I am grateful to David Blei, Guido Imbens, Denis Nekipelov, Francisco Ruiz, and Stefan 
Wager, with whom I have collaborated on many projects at the intersection of machine learning 
and econometrics and who have shaped my thinking, as well as to Mike Luca, Sendhil Mul-
lainathan, and Hal Varian, who have also contributed to my thinking through their writing, 
lecture notes, and many conversations. For acknowledgments, sources of research support, 
and disclosure of the author’s material fi nancial relationships, if  any, please see http:// www 
.nber .org/ chapters/ c14009.ack.

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



508    Susan Athey

describe the implications of the fi eld of economics as a whole. Throughout, 
I make reference to the literature broadly, but do not attempt to conduct a 
comprehensive survey or reference every application in economics.

The chapter highlights several themes.
A fi rst theme is that ML does not add much to questions about identifi ca-

tion, which concerns when the object of interest, for example, a causal eff ect, 
can be estimated with infi nite data, but rather yields great improvements 
when the goal is semiparametric estimation or when there are a large number 
of covariates relative to the number of observations. Machine learning has 
great strengths in using data to select functional forms fl exibly.

A second theme is that a key advantage of ML is that ML views empirical 
analysis as “algorithms” that estimate and compare many alternative models. 
This approach constrasts with economics, where (in principle, though rarely 
in reality) the researcher picks a model based on principles and estimates it 
once. Instead, ML algorithms build in “tuning” as part of the algorithm. 
The tuning is essentially model selection, and in an ML algorithm that is 
data driven. There are a whole host of advantages of this approach, includ-
ing improved performance as well as enabling researchers to be systematic 
and fully describe the process by which their model was selected. Of course, 
cross- validation has also been used historically in economics, for example, 
for selecting the bandwidth for a kernel regression, but it is viewed as a fun-
damental part of an algorithm in ML.

A third, closely related theme is that “outsourcing” model selection to 
algorithm works very well when the problem is “simple”—for example, pre-
diction and classifi cation tasks, where performance of a model can be evalu-
ated by looking at goodness of fi t in a held- out test set. Those are typically 
not the problems of greatest interest for empirical researchers in economics, 
who instead are concerned with causal inference, where there is typically not 
an unbiased estimate of the ground truth available for comparison. Thus, 
more work is required to apply an algorithmic approach to economic prob-
lems. The recent literature at the intersection of ML and causal inference, 
reviewed in this chapter, has focused on providing the conceptual framework 
and specifi c proposals for algorithms that are tailored for causal inference.

A fourth theme is that the algorithms also have to be modifi ed to pro-
vide valid confi dence intervals for estimated eff ects when the data is used to 
select the model. Many recent papers make use of techniques such as sample 
splitting, leave- one- out estimation, and other similar techniques to provide 
confi dence intervals that work both in theory and in practice. The upside is 
that using ML can provide the best of both worlds: the model selection is 
data driven, systematic, and a wide range of models are considered; yet, the 
model- selection process is fully documented, and confi dence intervals take 
into account the entire algorithm.

Finally, the combination of ML and newly available data sets will change 
economics in fairly fundamental ways ranging from new questions, to new 
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approaches, to collaboration (larger teams and interdisciplinary inter-
action), to a change in how involved economists are in the engineering and 
implementation of policies.

21.2 What Is Machine Learning and What Are Early Use Cases?

It is harder than one might think to come up with an operational defi -
nition of ML. The term can be (and has been) used broadly or narrowly; it 
can refer to a collections of subfi elds of computer science, but also to a set 
of topics that are developed and used across computer science, engineer-
ing, statistics, and increasingly the social sciences. Indeed, one could devote 
an entire article to the defi nition of ML, or to the question of whether the 
thing called ML really needed a new name other than statistics, the distinc-
tion between ML and AI, and so on. However, I will leave this debate to 
others and focus on a narrow, practical defi nition that will make it easier 
to distinguish ML from the most commonly used econometric approaches 
used in applied econometrics until very recently.1 For readers coming from 
a machine- learning background, it is also important to note that applied 
statistics and econometrics have developed a body of insights on topics rang-
ing from causal inference to effi  ciency that have not yet been incorporated in 
mainstream machine learning, while other parts of machine learning have 
overlap with methods that have been used in applied statistics and social 
sciences for many decades.

Starting from a relatively narrow defi nition of machine learning, machine 
learning is a fi eld that develops algorithms designed to be applied to data 
sets, with the main areas of focus being prediction (regression), classifi ca-
tion, and clustering or grouping tasks. These tasks are divided into two main 
branches, supervised and unsupervised ML. Unsupervised ML involves 
fi nding clusters of observations that are similar in terms of their covariates, 
and thus can be interpreted as “dimensionality reduction”; it is commonly 
used for video, images, and text. There are a variety of techniques available 
for unsupervised learning, including k- means clustering, topic modeling, 
community detection methods for networks, and many more. For example, 
the Latent Dirichlet Allocation model (Blei, Ng, and Jordan 2003) has fre-
quently been applied to fi nd “topics” in textual data. The output of a typical 
unsupervised ML model is a partition of  the set of  observations, where 
observations within each element of the partition are similar according to 
some metric, or, a vector of probabilities or weights that describe a mixture 
of topics or groups that an observation might belong to. If  you read in the 

1. I will also focus on the most popular parts of ML; like many fi elds, it is possible to fi nd 
researchers who defi ne themselves as members of the fi eld of ML doing a variety of diff erent 
things, including pushing the boundaries of  ML with tools from other disciplines. In this 
chapter I will consider such work to be interdisciplinary rather than “pure” ML, and will 
discuss it as such.
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newspaper that a computer scientist “discovered cats on YouTube,” that 
might mean that they used an unsupervised ML method to partition a set 
of  videos into groups, and when a human watches the the largest group, 
they observe that most of the videos in the largest group contain cats. This 
is referred to as “unsupervised” because there were no “labels” on any of the 
images in the input data; only after examining the items in each group does 
an observer determine that the algorithm found cats or dogs. Not all dimen-
sionality reduction methods involve creating clusters; older methods such as 
principal components analysis can be used to reduce dimensionality, while 
modern methods include matrix factorization (fi nding two low- dimensional 
matrices whose product well approximates a larger matrix), regularization 
on the norm of a matrix, hierarchical Poisson factorization (in a Bayesian 
framework) (Gopalan, Hofman, and Blei 2015), and neural networks.

In my view, these tools are very useful as an intermediate step in empirical 
work in economics. They provide a data- driven way to fi nd similar news-
paper articles, restaurant reviews, and so forth, and thus create variables 
that can be used in economic analyses. These variables might be part of  the 
construction of  either outcome variables or explanatory variables, depend-
ing on the context. For example, if  an analyst wishes to estimate a model 
of  consumer demand for diff erent items, it is common to model consumer 
preferences over characteristics of the items. Many items are associated with 
text descriptions as well as online reviews. Unsupervised learning could be 
used to discover items with similar product descriptions in an initial phase 
of  fi nding potentially related products, and it could also be used to fi nd 
subgroups of similar products. Unsupervised learning could further be used 
to categorize the reviews into types. An indicator for the review group could 
be used in subsequent analysis without the analyst having to use human 
judgement about the review content; the data would reveal whether a cer-
tain type of  review was associated with higher consumer perceived quality, 
or not. An advantage of  using unsupervised learning to create covariates 
is that the outcome data is not used at all; thus, concerns about spurious 
correlation between constructed covariates and the observed outcome are 
less problematic. Despite this, Egami et al. (2016) have argued that research-
ers may be tempted to fi ne- tune their construction of  covariates by testing 
how they perform in terms of  predicting outcomes, thus leading to spuri-
ous relationships between covariates and outcomes. They recommend the 
approach of  sample splitting, whereby the model tuning takes place on one 
sample of  data, and then the selected model is applied on a fresh sample 
of  data.

Unsupervised learning can also be used to create outcome variables. For 
example, Athey, Mobius, and Pál (2017) examine the impact of Google’s 
shutdown of Google News in Spain on the types of news consumers read. In 
this case, the share of news in diff erent categories is an outcome of interest. 
Unsupervised learning can be used to categorize news in this type of anal-
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ysis; that paper uses community detection techniques from network theory. 
In the absence of dimensionality reduction, it would be diffi  cult to mean-
ingfully summarize the impact of the shutdown on all of the diff erent news 
articles consumed in the relevant time frame.

Supervised machine learning typically entails using a set of features or 
covariates (X ) to predict an outcome (Y). When using the term prediction, 
it is important to emphasize that the framework focuses not on forecasting, 
but rather on a setting where there are some labeled observations where both 
X and Y are observed (the training data), and the goal is to predict outcomes 
(Y) in an independent test set based on the realized values of X for each unit 
in the test set. In other words, the goal is to construct μ̂(x), which is an esti-
mator of �(x) = E [Y |X = x], in order to do a good job predicting the true 
values of Y in an independent data set. The observations are assumed to be 
independent, and the joint distribution of X and Y in the training set is the 
same as that in the test set. These assumptions are the only substantive 
assumptions required for most machine- learning methods to work.

In the case of classifi cation, the goal is to accurately classify observations. 
For example, the outcome could be the animal depicted in an image, the 
“features” or covariates are the pixels in the image, and the goal is to cor-
rectly classify images into the correct animal depicted. A related but distinct 
estimation problem is to estimate Pr(Y = k |X = x) for each of k = 1, . . , K 
possible realizations of Y.

It is important to emphasize that the ML literature does not frame itself  
as solving estimation problems—so estimating �(x) or Pr(Y = k |X = x) is 
not the primary goal. Instead, the goal is to achieve goodness of fi t in an 
independent test set by minimizing deviations between actual outcomes and 
predicted outcomes. In applied econometrics, we often wish to understand 
an object like �(x) in order to perform exercises like evaluating the impact of 
changing one covariate while holding others constant. This is not an explicit 
aim of ML modeling.

There are a variety of ML methods for supervised learning, such as regu-
larized regression (LASSO, ridge and elastic net), random forest, regression 
trees, support vector machines, neural nets, matrix factorization, and many 
others, such as model averaging. See Varian (2014) for an overview of some 
of the most popular methods and Mullainathan and Spiess (2017) for more 
details. (Also note that White [1992] attempted to popularize neural nets in 
economics in the early 1990s, but at the time they did not lead to substan-
tial performance improvements and did not become popular in economics.) 
What leads us to categorize these methods as ML methods rather than tra-
ditional econometric or statistical methods? First is simply an observation: 
until recently, these methods were neither used in published social science 
research, nor taught in social science courses, while they were widely stud-
ied in the self- described ML and/or “statistical learning” literatures. One 
exception is ridge regression, which received some attention in economics, 
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and LASSO had also received some attention. But from a more functional 
perspective, one common feature of many ML methods is that they use data- 
driven model selection. That is, the analyst provides the list of covariates or 
features, but the functional form is at least in part determined as a function 
of the data, and rather than performing a single estimation (as is done, at 
least in theory, in econometrics), so that the method is better described as 
an algorithm that might estimate many alternative models and then select 
among them to maximize a criterion.

There is typically a trade- off  between expressiveness of the model (e.g., 
more covariates included in a linear regression) and risk of overfi tting, which 
occurs when the model is too rich relative to the sample size. (See Mullaina-
than and Spiess [2017] for more discussion of this.) In the latter case, the 
goodness of fi t of the model when measured on the sample where the model 
is estimated is expected to be much better than the goodness of fi t of the 
model when evaluated on an independent test set. The ML literature uses a 
variety of techniques to balance expressiveness against overfi tting. The most 
common approach is cross- validation whereby the analyst repeatedly esti-
mates a model on part of the data (a “training fold”) and then evaluates it 
on the complement (the “test fold”). The complexity of the model is selected 
to minimize the average of the mean- squared error of the prediction (the 
squared diff erence between the model prediction and the actual outcome) on 
the test folds. Other approaches used to control overfi tting include averaging 
many diff erent models, sometimes estimating each model on a subsample 
of the data (one can interpret the random forest in this way).

In contrast, in much of cross- sectional econometrics and empirical work 
in economics, the tradition has been that the researcher specifi es one model, 
estimates the model on the full data set, and relies on statistical theory to 
estimate confi dence intervals for estimated parameters. The focus is on the 
estimated eff ects rather than the goodness of fi t of the model. For much em-
pirical work in economics, the primary interest is in the estimate of a causal 
eff ect, such as the eff ect of a training program, a minimum wage increase, 
or a price increase. The researcher might check robustness of this parameter 
estimate by reporting two or three alternative specifi cations. Researchers 
often check dozens or even hundreds of alternative specifi cations behind 
the scenes, but rarely report this practice because it would invalidate the 
confi dence intervals reported (due to concerns about multiple testing and 
searching for specifi cations with the desired results). There are many disad-
vantages to the traditional approach, including but not limited to the fact 
that researchers would fi nd it diffi  cult to be systematic or comprehensive in 
checking alternative specifi cations, and further because researchers were not 
honest about the practice, given that they did not have a way to correct for 
the specifi cation search process. I believe that regularization and systematic 
model selection have many advantages over traditional approaches, and for 
this reason will become a standard part of empirical practice in econom-
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ics. This will particularly be true as we more frequently encounter data sets 
with many covariates, and also as we see the advantages of being systematic 
about model selection. As I discuss later, however, this practice must be 
modifi ed from traditional ML and in general “handled with care” when the 
researcher’s ultimate goal is to estimate a causal eff ect rather than maximize 
goodness of fi t in a test set.

To build some intuition about the diff erence between causal eff ect estima-
tion and prediction, it can be useful to consider the widely used method of 
instrumental variables. Instrumental variables are used by economists when 
they wish to learn a causal eff ect, for example, the eff ect of a price on a fi rm’s 
sales, but they only have access to observational (nonexperimental) data. An 
instrument in this case might be an input cost for the fi rm that shifts over 
time, and is unrelated to factors that shift consumer’s demand for the prod-
uct (such demand shifters can be referred to as “confounders” becaues they 
aff ect both the optimal price set by the fi rm and the sales of the product). 
The instrumental variables method essentially projects the observed prices 
onto the input costs, thus only making use of the variation in price that is 
explained by changes in input costs when estimating the impact of price on 
sales. It is very common to see that a predictive model (e.g., least squares 
regression) might have very high explanatory power (e.g., high R2), while 
the causal model (e.g., instrumental variables regression) might have very 
low explanatory power (in terms of predicting outcomes). In other words, 
economists typically abandon the goal of accurate prediction of outcomes 
in pursuit of an unbiased estimate of a causal parameter of interest.

Another diff erence derives from the key concerns in diff erent approaches, 
and how those concerns are addressed. In predictive models, the key con-
cern is the trade- off  between expressiveness and overfi tting, and this trade- 
off  can be evaluated by looking at goodness of fi t in an independent test 
set. In contrast, there are several distinct concerns for causal models. The 
fi rst is whether the parameter estimates from a particular sample are spuri-
ous, that is, whether estimates arise due to sampling variation so that if  a 
new random sample of the same size was drawn from the population, the 
parameter estimate would be substantially diff erent. The typical approach 
to this problem in econometrics and statistics is to prove theorems about 
the consistency and asymptotic normality of the parameter estimates, pro-
pose approaches to estimating the variance of  parameter estimates, and 
fi nally to use those results to estimate standard errors that refl ect the sam-
pling uncertainty (under the conditions of the theory). A more data- driven 
approach is to use bootstrapping and estimate the empirical distribution of 
parameter estimates across bootstrap samples. The typical ML approach 
of evaluating performance in a test set does not directly handle the issue of 
the uncertainty over parameter estimates, since the parameter of interest is 
not actually observed in any test set. The researcher would need to estimate 
the parameter again in the test set.
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A second concern is whether the assumptions required to “identify” a 
causal eff ect are satisfi ed, where in econometrics we say that a parameter is 
identifi ed if  we can learn it eventually with infi nite data (where even in the 
limit, the data has the same structure as in the sample considered). It is well 
known that the causal eff ect of a treatment is not identifi ed without making 
assumptions, assumptions that are generally not testable (that is, they cannot 
be rejected by looking at the data). Examples of identifying assumptions 
include the assumption that the treatment is randomly assigned, or that 
treatment assignment is “unconfounded.” In some settings, these assump-
tions require the analyst to observe all potential “confounders” and con-
trol for them adequately; in other settings, the assumptions require that an 
instrumental variable is uncorrelated with the unobserved component of 
outcomes. In many cases it can be proven that even with a data set of infi nite 
size, the assumptions are not testable—they cannot be rejected by looking at 
the data, and instead must be evaluated on substantive grounds. Justifying 
assumptions is one of the primary components of an observational study in 
applied economics. If  the “identifying” assumptions are violated, estimates 
may be biased (in the same way) in both training data and test data. Testing 
assumptions usually requires additional information, like multiple experi-
ments (designed or natural) in the data. Thus, the ML approach of evaluat-
ing performance in a test set does not address this concern at all. Instead, ML 
is likely to help make estimation methods more credible, while maintaining 
the identifying assumptions: in practice, coming up with estimation methods 
that give unbiased estimates of treatment eff ects requires fl exibly modeling 
a variety of empirical relationships, such as the relationship between the 
treatment assignment and covariates. Since ML excels at data- driven model 
selection, it can be useful in systematizing the search for the best functional 
forms when implementing an estimation technique.

Economists also build more complex models that incorporate both be-
havioral and statistical assumptions in order to estimate the impact of coun-
terfactual policies that have never been used before. A classic example is 
McFadden’s methodological work in the early 1970s (e.g., McFadden 1973) 
analyzing transportation choices. By imposing the behavioral assumption 
that consumers maximize utility when making choices, it is possible to esti-
mate parameters of  the consumer’s utility function and estimate the welfare 
eff ects and market share changes that would occur when a choice is added 
or removed (e.g., extending the BART transportation system), or when 
the characteristics of  the good (e.g., price) are changed. Another example 
with more complicated behavioral assumptions is the case of  auctions. For 
a data set with bids from procurement auctions, the “structural” approach 
involves estimating a probability distribution over bidder values, and then 
evaluating the counterfactual eff ect of  changing auction design (e.g., Laf-
font, Ossard, and Vuong 1995; Athey, Levin, and Seira 2011; Athey, Coey, 
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and Levin 2013; or the review by Athey and Haile 2007). For further discus-
sions of  the contrast between prediction and parameter estimation, see the 
recent review by Mullainathan and Spiess (2017). There is a small litera-
ture in ML referred to as “inverse reinforcement learning” (Ng and Russell 
2000) that has a similar approach to the structural estimation literature 
economics; this ML literature has mostly operated independently without 
much reference to the earlier econometric literature. The literature attempts 
to learn “reward functions” (utility functions) from observed behavior in 
dynamic settings.

There are also other categories of  ML models; for example, anomaly 
detection focuses on looking for outliers or unusual behavior and is used, 
for example, to detect network intrusion, fraud, or system failures. Other 
categories that I will return to are reinforcement learning (roughly, approxi-
mate dynamic programming) and multiarmed bandit experimentation 
(dynamic experimentation where the probabiity of selecting an arm is cho-
sen to balance exploration and exploitation). These literatures often take 
a more explicitly causal perspective and thus are somewhat easier to relate 
to economic models, and so my general statements about the lack of focus 
on causal inference in ML must be qualifi ed when discussing the literature 
on bandits.

Before proceeding, it is useful to highlight one other contribution of the 
ML literature. The contribution is computational rather than conceptual, 
but it has had such a large impact that it merits a short discussion. The tech-
nique is called stochastic gradient descent (SGD), and it is used in many dif-
ferent types of models, including the estimation of neural networks as well 
as large scale Bayesian models (e.g., Ruiz, Athey, and Blei [2017], discussed 
in more detail below). In short, stochastic gradient descent is a method for 
optimizing an objective function, such as a likelihood function or a gener-
alized method of moments objective function, with respect to parameters. 
When the objective function is expensive to compute (e.g., because it requires 
numerical integration), stochastic gradient descent can be used. The main 
idea is that if  the objective is the sum of terms, each term corresponding to a 
single observation, the gradient can be approximated by picking a single data 
point and using the gradient evaluated at that observation as an approxima-
tion to the average (over observations) of the gradient. This estimate of the 
gradient will be very noisy, but unbiased. The idea is that it is more eff ective 
to “climb a hill” taking lots of steps in a direction that is noisy but unbiased, 
than it is to take a small number of steps, each in the right direction, which is 
what happens if  computational resources are focused on getting very precise 
estimates of the gradient of the objective at each step. Stochastic gradient 
descent can lead to dramatic performance improvements, and thus enable 
the estimation of very complex models that would be intractable using tra-
ditional approaches.
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21.3 Using Prediction Methods in Policy Analysis

21.3.1  Applications of Prediction Methods 
to Policy Problems in Economics

There have already been a number of successful applications of predic-
tion methodology to policy problems. Kleinberg et al. (2015) have argued 
that there is a set of problems where off - the- shelf  ML methods for predic-
tion are the key part of important policy and decision problems. They use 
examples like deciding whether to do a hip replacement operation for an 
elderly patient; if  you can predict based on their individual characteris-
tics that they will die within a year, then you should not do the operation. 
Many Americans are incarcerated while awaiting trial; if  you can predict 
who will show up for court, you can let more out on bail. Machine- learning 
algorithms are currently in use for this decision in a number of  jurisdic-
tions. Another natural example is credit scoring; an economics paper by 
Bjorkegren and Grissen (2017) uses ML methods to predict loan repayment 
using mobile phone data.

In other applications, Goel, Rao, and Shroff  (2016) use ML methods to 
examine stop- and- frisk laws, using observables of a police incident to pre-
dict the probability that a suspect has a weapon, and they show that blacks 
are much less likely than whites to have a weapon conditional on observ-
ables and being frisked. Glaeser, Hillis, et al. (2016) helped cities design a 
contest to build a predictive model that predicted health code violations in 
restaurants in order to better allocate inspector resources. There is a rap-
idly growing literature using machine learning together with images from 
satellites and street maps to predict poverty, safety, and home values (see, 
e.g., Naik et al. 2017). As Glaeser, Kominers, et al. (2015) argue, there are 
a variety of applications of this type of prediction methodology. It can be 
used to compare outcomes over time at a very granular level, thus making 
it possible to assess the impact of a variety of policies and changes, such as 
neighborhood revitalization. More broadly, the new opportunities created 
by large- scale imagery and sensors may lead to new types of analyses of 
productivity and well- being.

Although prediction is often a large part of a resource allocation prob-
lem—there is likely to be agreement that people who will almost certainly 
die soon should not receive hip replacement surgery, and rich people should 
not receive poverty aid—Athey (2017) discusses the gap between identify-
ing units that are at risk and those for whom intervention is most benefi cial. 
Determining which units should receive a treatment is a causal inference 
question, and answering it requires diff erent types of data than prediction. 
Either randomized experiments or natural experiments may be needed to 
estimate heterogeneous treatment eff ects and optimal assignment policies. 
In business applications, it has been common to ignore this distinction and 

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



The Impact of Machine Learning on Economics    517

focus on risk identifi cation; for example, as of 2017, the Facebook advertis-
ing optimization tool provided to advertisers optimizes for consumer clicks, 
but not for the causal eff ect of the advertisement. The distinction is often not 
emphasized in marketing materials and discussions in the business world, 
perhaps because many practitioners and engineers are not well versed in 
the distinction between prediction and causal inference.

21.3.2 Additional Topics in Prediction for Policy Settings

Athey (2017) summarizes a variety of  research questions that arise when 
prediction methods are taken into policy applications. A number of  these 
have attracted initial attention in both ML and the social sciences, and 
interdisciplinary conferences and workshops have begun to explore these 
issues.

One set of questions concerns interpretability of models. There are discus-
sions of  what interpretability means, and whether simpler models have 
advantages. Of course, economists have long understood that simple models 
can also be misleading. In social sciences data, it is typical that many attri-
butes of individuals or locations are positively correlated—parents’ educa-
tion, parents’ income, child’s education, and so on. If  we are interested in a 
conditional mean function, and estimate μ̂(x) = E [Yi | Xi = x], using a simpler 
model that omits a subset of covariates may be misleading. In the simpler 
model, the relationship between the omitted covariates and outcomes is 
loaded onto the covariates that are included. Omitting a covariate from a 
model is not the same thing as controlling for it in an analysis, and it can 
sometimes be easier to interpret a partial eff ect of a covariate controlling for 
other factors than it is to keep in mind all of the other (omitted) factors and 
how they covary with those included in a model. So, simpler models can 
sometimes be misleading; they may seem easy to understand, but the under-
standing gained from them may be incomplete or wrong.

One type of model that typically is easy to interpret and explain is a causal 
model. As reviewed in Imbens and Rubin (2015), the causal inference frame-
work typically makes the estimand very precise—for example, the average 
eff ect if  a treatment were applied to a particular population, the conditional 
average treatment eff ect (conditional on some observable characteristics of 
individuals), or the average eff ect of a treatment on a subpopulation such as 
“compliers” (those whose treatment adoption is aff ected by an instrumental 
variable). Such parameters by defi nition give the answer to a well- defi ned 
question, and so the magnitudes are straightforward to interpret. Key pa-
rameters of “structural” models are also straightforward to interpret—they 
represent parameters of consumer utility functions, elasticities of demand 
curves, bidder valuations in auctions, marginal costs of fi rms, and so on. An 
area for further research concerns whether there are other ways to math-
ematically formalize what it means for a model to be interpretable, or to 
analyze empirically the implications of interpretability. Yeomans, Shah, and 
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Kleinberg (2016) study empirically a related issue of how much people trust 
ML- based recommender systems, and why.

Another area that has attracted a lot of attention is the question of fair-
ness and nondiscrimination, for example, whether algorithms will promote 
discrimination by gender or race when used in settings like hiring, judicial 
decisions, or lending. There are a number of interesting questions that can 
be considered. One is, how can fairness constraints be defi ned? What type 
of fairness is desired? For example, if  a predictive model is used to allocate 
job interviews based on resumes, there are two types of errors, Type I and 
Type II. It is straightforward to show that it is in general impossible to 
equalize both Type I and Type II errors across two diff erent categories of 
people (e.g., men and women), so the analyst must choose which to equalize 
(or both). See Kleinberg, Mullainathan, and Raghaven (2016) for further 
analysis and development of the inherent trade- off s in fairness in predictive 
algorithms. Overall, the literature on this topic has grown rapidly in the last 
two years, and we expect that as ML algorithms are deployed in more and 
more contexts, the topic will continue to develop. My view is that it is more 
likely that ML models will help make resource allocation more rather than 
less fair; algorithms can absorb and eff ectively use a lot more information 
than humans, and thus are less likely than humans to rely on stereotypes. 
To the extent that unconstrained algorithms do have undesirable distribu-
tional consequences, it is possible to constrain the algorithms. Generally, 
algorithms can be trained to optimize objectives under constraints, and thus 
it may be easier to impose societal objectives on algorithms than on subjec-
tive decisions by humans.

A third issue that arises is stability and robustness, for example, in 
response to variations in samples or variations in the environment. There 
are a variety of related ideas in machine learning, including domain adapta-
tion (how do you make a model trained in one environment perform well in 
another environment), “transfer learning,” and others. The basic concern 
is that ML algorithms do exhaustive searches across a very large number 
of  possible specifi cations looking for the best model that predicts Y based 
on X. The models will fi nd subtle relationships bewteen X and Y, some of 
which might not be stable across time or across environments. For example, 
for the last few years there may be more videos of  cats with pianos than 
dogs with pianos. The presence of  a piano in a video may thus predict cats. 
However, pianos are not a fundamentnal feature of  cats that holds across 
environments, and so if  a fad arises where dogs play pianos, performance 
of  an ML algorithm might suff er. This might not be a problem for a tech 
fi rm that reestimates its models with fresh data daily, but predictive models 
are often used over much longer time periods in industry. For example, 
credit- scoring models may be held fi xed, since changing them makes it hard 
to assess the risk of  the set of  consumers who accept credit off ers. Scoring 
models used in medicine might be held fi xed over many years. There are 
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many interesting methodological issues involved in fi nding models that 
have stable performance and are robust to changing circumstances.

Another issue is that of manipulability. In the application of using mobile 
data to do credit scoring, a concern is that consumers may be able to mani-
plate the data observed by the loan provider (Bjorkegren and Grissen 2017). 
For example, if  certain behavioral patterns help a consumer get a loan, the 
consumer can make it look like they have these behavioral patterns, for ex-
ample, by visiting certain areas of a city. If  resources are allocated to homes 
that look poor via satellite imagery, homes or villages can possibly modify 
the aerial appearance of their homes to make them look poorer. An open 
area for future research concerns how to constrain ML models to make them 
less prone to manipulability; Athey (2017) discusses some other examples 
of this.

There are also other considerations that can be brought into ML when 
it is taken to the fi eld, including computational time, the cost of collecting 
and maintaining the “features” that are used in a model, and so on. For ex-
ample, technology fi rms sometimes make use of simplifi ed models in order 
to reduce the response time for real- time user requests for information.

Overall, my prediction is that social scientists (and computer scientists 
at the intersection with social science), particularly economists and other 
social scientists, will contribute heavily to defi ning these types of problems 
and concerns formally, and proposing solutions to them. This will not only 
provide for better implementations of ML in policy, but will also provide 
rich fodder for interesting research.

21.4 A New Literature on Machine Learning and Causal Inference

Despite the fascinating examples of “off - the- shelf” or slightly modifi ed 
prediction methods, in general ML prediction models are solving fundamen-
tally diff erent problems from much empirical work in social science, which 
instead focuses on causal inference. A prediction I have is that there will be 
an active and important literature combining ML and causal inference to 
create new methods, methods that harness the strengths of ML algorithms 
to solve causal inference problems. In fact, it is easy to make this prediction 
with confi dence because the movement is already well underway. Here I will 
highlight a few examples, focusing on those that illustrate a range of themes, 
while emphasizing that this is not a comprehensive survey or a thorough 
review.

To see the diff erence between prediction and causal inference, imagine 
that you have a data set that contains data about prices and occupancy 
rates of  hotels. Prices are easy to obtain through price comparison sites, 
but occupancy rates are typically not made public by hotels. Imagine fi rst 
that a hotel chain wishes to form an estimate of  the occupancy rates of 
competitors, based on publicly available prices. This is a prediction problem: 
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the goal is to get a good estimate of occupancy rates, where posted prices 
and other factors (such as events in the local area, weather, and so on) are 
used to predict occupancy. For such a model, you would expect to fi nd that 
higher posted prices are predictive of higher occupancy rates, since hotels 
tend to raise their prices as they fi ll up (using yield management software). 
In contrast, imagine that a hotel chain wishes to estimate how occupancy 
would change if  the hotel raised prices across the board (that is, if  it repro-
grammed the yield management software to shift prices up by 5 percent in 
every state of the world). This is a question of causal inference. Clearly, even 
though prices and occupancy are positively correlated in a typical data set, 
we would not conclude that raising prices would increase occupancy. It is 
well known in the causal inference literature that the question about price 
increases cannot be answered simply by examining historical data without 
additional assumptions or structure. For example, if  the hotel previously ran 
randomized experiments on pricing, the data from these experiments can be 
used to answer the question. More commonly, an analyst will exploit natural 
experiments or instrumental variables where the latter are variables that are 
unrelated to factors that aff ect consumer demand, but that shift fi rm costs 
and thus their prices. Most of the classic supervised ML literature has little 
to say about how to answer this question.

To understand the gap between prediction and causal inference, recall that 
the foundation of supervised ML methods is that model selection (through, 
e.g., cross- validation) is carried out to optimize goodness of fi t on a test 
sample. A model is good if  and only if  it predicts outcomes well in a test 
set. In contrast, a large body of econometric research builds models that 
substantially reduce the goodness of fi t of a model in order to estimate the 
causal eff ect of, say, changing prices. If  prices and quantities are positively 
correlated in the data, any model that estimates the true causal eff ect (quan-
tity goes down if  you change price) will not do as good a job fi tting a test 
data set that has the same joint distribution of prices and quantities as the 
training data. The place where the econometric model with a causal estimate 
would do better is at fi tting what happens if  the fi rm actually changes prices 
at a given point in time at doing counterfactual predictions when the world 
changes. Techniques like instrumental variables seek to use only some of the 
information that is in the data the clean or exogenous or experiment- like 
variation in price sacrifi cing predictive accuracy in the current environment 
to learn about a more fundamental relationship that will help make decisions 
about changing price.

However, a new but rapidly growing literature is tackling the problem of 
using ML methods for causal inference. This new literature takes many of 
the strengths and innovations of ML methods, but applies them to causal 
inference. Doing this requires changing the objective function, since the 
ground truth of the causal parameter is not observed in any test set. Also 
as a consequence of the fact that the truth is not observed in a test set, sta-
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tistical theory plays a more important role in evaluating models, since it is 
more diffi  cult to directly assess how well a parameter estimates the truth, 
even if  the analyst has access to an independent test set. Indeed, this dis-
cussion highlights one of the key ways in which prediction is substantially 
simpler than parameter estimation: for prediction problems, a prediction 
for a given unit (given its covariates) can be summarized in a single number, 
the predicted outcome, and the quality of the prediction can be evaluated 
on a test set without further modeling assumptions. Although the average 
squared prediction error of a model on a test set is a noisy estimate of the 
expected value of the mean squared error on a random test set (due to small 
sample size), the law of large numbers applies to this average and it converges 
quickly to the truth as the test set size increases. Since the standard deviation 
of the prediction error can also be easily estimated, it is straightforward to 
evaluate predictive models without imposing additional assumptions.

There are a variety of diff erent problems that can be tackled with ML 
methods. An incomplete list of  some that have gained early attention is 
given as follows. First, we can consider the type of identifi cation strategy 
for identifying causal eff ects. Some that have received attention in the new 
ML/ causal inference literature include:

1. Treatment randomly assigned (experimental data).
2. Treatment assignment unconfounded (conditional on covariates).
3. Instrumental variables.
4. Panel data settings (including diff erence- in-diff erence designs).
5. Regression discontinuity designs.
6. Structural models of individual or fi rm behavior.

In each of those settings, there are diff erent problems of interest:

1. Estimating average treatment eff ects (or a low- dimensional parameter 
vector).

2. Estimating heterogeneous treatment eff ects in simple models or models 
of limited complexity.

3. Estimating heterogeneous treatment eff ects nonparametrically.
4. Estimating optimal treatment assignment policies.
5. Identifying groups of individuals that are similar in terms of their treat-

ment eff ects.

Although the early literature is already too large to summarize all of the 
contributions to each combination of identifi cation strategty and problem 
of interest, it is useful to observe that at this point there are entries in almost 
all of the “boxes” associated with diff erent identifi cation strategies, both for 
average treatment eff ects and heterogeneous treatment eff ects. Here, I will 
provide a bit more detail on a few leading cases that have received a lot of 
attention, in order to illustrate some key themes in the literature.

It is also useful to observe that even though the last four problems seem 
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closely related, they are distinct, and the methods used to solve them as well 
as the issues that arise are distinct. These distinctions have not traditionally 
been emphasized as much in the literature on causal inference, but they mat-
ter more in environments with data- driven model selection because each has 
a diff erent objective and the objective function can make a big diff erence in 
determining the selected model in ML- based models. Issues of inference are 
also distinct, as we will discuss further below.

21.4.1 Average Treatment Eff ects

A large and important branch of the literature on causal inference focuses 
on estimation of  average treatment eff ects under the unconfoundedness 
assumption. This assumption requires that potential outcomes (the out-
comes a unit would experience in alternative treatment regimes) are inde-
pendent of treatment assignment, conditional on covariates. In other words, 
treatment assignment is as good as random after controlling for covariates.

From the 1990s through the fi rst decade of  the twenty- fi rst century, a 
literature emerged about using semiparametric methods to estimate average 
treatment eff ects (e.g., Bickel et al. [1993], focusing on an environment with 
a fi xed number of covariates that is small relative to the sample size). The 
methods are semiparametric in the sense that the goal is to estimate a low- 
dimensional parameter—in this case, the average treatment eff ect—without 
making parametric assumptions about the way in which covariates aff ect 
outcomes (e.g., Hahn 1998). (See Imbens and Wooldridge [2009] and Imbens 
and Rubin [2015] for reviews.) In the middle of the fi rst decade of the twenty- 
fi rst decade, Mark van der Laan and coauthors introduced and developed 
a set of methods called “targeted maximum likelihood” (van der Laan and 
Rubin 2006). The idea is that maximum likelihood is used to estimate a low- 
dimensional parameter vector in the presence of high- dimensional nuisance 
parameters. The method allows the nuisance parameters to be estimated 
with techniques that have less well- established properties or a slower con-
vergence rate. This approach can be applied to estimate an average treatment 
eff ect parameter under a variety of identifi cation assumptions, but impor-
tantly, it is an approach that can be used with many covariates.

An early example of the application of ML methods to causal inference in 
economics (see Belloni, Chernozhukov, and Hansen 2014 and Chernozhu-
kov, Hansen, and Spindler 2015 for reviews) uses regularized regression as 
an approach to deal with many potential covariates in an environment where 
the outcome model is “sparse,” meaning that only a small number of covari-
ates actually aff ect mean outcome (but there are many observables, and 
the analyst does not know which ones are important). In an environment 
with unconfoundedness, since some covariates are correlated with both the 
treatment assignment and the outcome, if  the analyst does not condition 
on them the omission of the confounder will lead to a biased estimate of 
the treatment eff ect. Belloni, Chernozhukov, and Hansen propose a double- 
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selection method based on the LASSO. The LASSO is a regularized regres-
sion procedure where a regression is estimated using an objective function 
that balances in-sample goodness of fi t with a penalty term that depends on 
the sum of the magnitude of regression coeffi  cients. This form of penalty 
leads many covariates to be assigned a coeffi  cient of zero, eff ectively drop-
ping them from the regression. The magnitude of the penalty parameter is 
selected using cross- validation. The authors observe that if  LASSO is used 
in a regression of the outcome and both the treatment indicator and other 
covariates, the coeffi  cient on the treatment indicator will be a biased estimate 
of the treatment eff ect because confounders that have a weak relationship 
with the outcome but a strong relationship with the treatment assignment 
may be zeroed out by an algorithm whose sole objective is to select variables 
that predict outcomes.

A variety of other methods have been proposed for combining machine 
learning and traditional econometric methods for estimating average treat-
ment eff ects under the unconfoundedness assumption. Athey, Imbens, and 
Wager (2016) propose using a method they refer to as “residual balanc-
ing,” building on work on balancing weights by Zubizarreta (2015). Their 
approach is similar to a “doubly- robust” method for estimating average treat-
ment eff ects that proceeds by taking the average of the effi  cient score, which 
involves an estimate of the conditional mean of outcomes given covariates 
as well as the inverse of the estimated propensity score; however, the residual 
balancing replaces inverse propensity score weights with weights obtained 
using quadratic programming, where the weights are designed to achieve 
balance between the treatment and control group. The conditional mean of 
outcomes is estimated using LASSO. The main result in the paper is that this 
procedure is effi  cient and achieves the same rate of convergence as if  the out-
come model was known, under a few key assumptions. The most important 
assumption is that the outcome model is linear and sparse, although there 
can be a large number of covariates and the analyst does not need to have 
knowledge of which ones are important. The linearity assumption, while 
strong, allows the key result to hold in the absence of any assumptions about 
the structure of the process mapping covariates to the assignment, other 
than overlap (propensity score bounded strictly between 0 and 1, which is 
required for identifi cation of average treatment eff ects). No other approach 
has been proposed that is effi  cient without assumptions on the assignment 
model. In settings where the assignment model is complex, simulations show 
that the method works better than alternatives, without sacrifi cing much in 
terms of performance on simpler models. Complex assignment rules with 
many weak confounders arise commonly in technology fi rms, where com-
plex models are used to map from a user’s observed history to assignments 
of recommendations, advertisements, and so on.

More recently, Chernozhukov et al. (2017) propose “double machine 
learning,” a method analogous to Robinson (1988), using a semiparametric 
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residual- on- residual regression as a method for estimating average treat-
ment eff ects under unconfoundedness. The idea is to run a nonparametric 
regression of outcomes on covariates, and a second nonparametric regres-
sion of the treatment indicator on covariates; then, the residuals from the 
fi rst regression are regressed on the residuals from the second regression. 
In Robinson (1988), the nonparametric estimator was a kernel regression; 
the more recent work establishes that any ML method can be used for the 
nonparametric regression, so long as it is consistent and converges at the 
rate n1/ 4 .

A few themes are common to the latter two approaches. One is the impor-
tance of building on the traditional literature on statistical effi  ciency, which 
provides strong guidance on what types of estimators are likely to be suc-
cessful, as well as the particular advantages of doubly robust methods for 
average treatment eff ect estimation. A second theme is that orthogonaliza-
tion can work very well in practice—using machine learning to estimate 
fl exibly the relationship between outcomes and treatment indicators and 
covariates—and then estimating average treatment eff ects using residualized 
outcomes and/or residualized treatment indicators. The intuition is that in 
high dimensions, mistakes in estimating nuisance parameters are likely, but 
working with residualized variables makes the estimation of  the average 
treatment eff ect orthogonal to errors in estimating nuisance parameters. I 
expect that this insight will continue to be utilized in the future literature.

21.4.2 Heterogeneous Treatment Eff ects and Optimal Policies

Another area of active research concerns the estimation of heterogene-
ity in treatment eff ects, where here we refer to heterogeneity with respect to 
observed covariates. For example, if  the treatment is a drug, we can be inter-
ested in how the drug’s effi  cacy varies with individual characteristics. Athey 
and Imbens (2017) provides a more detailed review of a variety of questions 
that can be considered relating to heterogeneity; we will focus on a few here.

Treatment eff ect heterogeneity can be of interest either for basic scien-
tifi c understanding (that can be used to design new policies or understand 
mechanisms), or as a means to the end of estimating treatment assignment 
policies that map from a user’s characteristics to a treatment.

Starting with basic scientifi c understanding of treatment eff ects, another 
question concerns whether we wish to discover simple patterns of heteroge-
neity, or whether a fully nonparametric estimator for how treatment eff ects 
vary with covariates is desired. One approach to discovering simpler patterns 
is provided by Athey and Imbens (2016). This paper proposes to create a 
partition of the covariate space, and then estimate treatment eff ects in each 
element of the partition. The splitting rule optimizes for fi nding splits that 
reveal treatment eff ect heterogeneity. The paper also proposes sample split-
ting as a way to avoid the bias inherent in using the same data to discover 
the form of heterogeneity, and to estimate the magnitude of the heteroge-
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neity. One sample is used to construct the partition, while a second sample 
is used to estimate treatment eff ects. In this way, the confi dence intervals 
built around the estimates on the second sample have nominal coverage no 
matter how many covariates there are. The intuition is that since the parti-
tion is created on an independent sample, the partition used is completely 
unrelated to the realizations of outcomes in the second sample. In addition, 
the procedure used to create the partition penalizes splits that increase the 
variance of the estimated treatment eff ects too much. This, together with 
cross- validation to select tree complexity, ensures that the leaves don’t get 
too small, and thus the confi dence intervals have nominal coverage.

There have already been a wide range of  applications of  “causal trees” 
in applications ranging from medicine to economic fi eld experiments. The 
methods allow the researcher to discover forms of  heterogeneity that were 
not specifi ed in a preanalysis plan without invalidating confi dence intervals. 
The method is also easily “interpretable,” in that for each element of  the 
partition the estimator is a traditional estimate of  a treatment eff ect. How-
ever, it is important for researchers to recognize that just because, say, three 
covariates are used to describe an element of  a partition (e.g., male indi-
viduals with income between $100,000 and $120,000 and fi fteen to twenty 
years of  schooling), the average of  all values of  covariates will vary across 
partition elements. So, it is important not to draw conclusions about what 
covariates are not associated with treatment eff ect heterogeneity. This chap-
ter builds on earlier work on “model- based recursive partitioning” (Zeileis, 
Hothorn, and Hornik 2008), which looked at recursive partitioning for 
more complex models (general models estimated by maximum likelihood), 
but did not provide statistical properties (nor suggest the sample splitting, 
which is a focus of  Athey and Imbens 2016). Asher et al. (2016) provide 
another related example of  building classifi cation trees for heterogeneity 
in GMM models.

In some contexts, a simple partition of the covariate space is most useful. 
In other contexts, it is desirable to have a fully nonparametric estimate of 
how treatment eff ects vary with covariates. In the traditional econometrics 
literature, this could be accomplished through kernel estimation or matching 
techniques; these methods have well- understood statistical properties. How-
ever, even though they work well in theory, in practice matching methods 
and kernel methods break down when there are more than a handful of 
covariates.

In Wager and Athey (forthcoming), we introduce the idea of a “causal 
forest.” Essentially, a causal forest is the average of a lot of  causal trees, 
where trees diff er from one another due to subsampling. Conceptually, a 
causal forest can be thought of as a version of a nearest neighbor match-
ing method, but one where there is a data- driven approach to determine 
which dimensions of the covariate space are important to match on. The 
main technical results in this chapter establish the fi rst asymptotic normality 
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results for random forests used for prediction; this result is then extended to 
causal inference. We also propose an estimator for the variance and prove 
its consistency, so that confi dence intervals can be constructed.

A key requirement for our results about random forests is that each indi-
vidual tree is “honest”; that is, we use diff erent data to construct a partition 
of the covariate space from the data used to estimate treatment eff ects within 
the leaves. That is, we use sample splitting, similar to Athey and Imbens 
(2016). In the context of a random forest, all of the data is used for both 
“model selection” and estimation, as an observation that is in the partition- 
building subsample for one tree may be in the treatment eff ect estimation 
sample in another tree.

Athey, Tibshirani, and Wager (2017) extended the framework to analyze 
nonparametric parameter heterogeneity in any model where the parameter 
of interest can be estimated via GMM. The idea is that the random forest 
is used to construct a series of trees. Rather than estimating a model in the 
leaves of every tree, the algorithm instead extracts the weights implied by 
the forest. In particular, when estimating treatment eff ects for a particular 
value of X, we estimate a “local GMM” model, where observations close 
to X are weighted more heavily. How heavily? The weights are determined 
by the fraction of time an observation ended up in the same leaf during the 
forest creation stage. A subtlety in this project is that it is diffi  cult to design 
general purpose, computationally lightweight “splitting rules” for construct-
ing partitions according to the covariates that predict parameter heteroge-
neity. We provide a solution to that problem and also provide a proof of 
asymptotic normality of estimates, as well as an estimator for confi dence 
intervals. The paper highlights the case of instrumental variables, and how 
the method can be used to fi nd heterogeneity in treatment eff ect parameters 
estimated with instrumental variables. An alternative approach to estimating 
parameter heterogeneity in instrumental variables models was proposed by 
Hartford, Lewis, and Taddy (2016), who use an approach based on neural 
nets. General nonparametric theory is more challenging for neural nets.

The method of Athey, Tibshirani, and Wager (2017), “generalized ran-
dom forests,” can be used as an alternative to “traditional” methods such as 
local generalized method of moments or local maximum likelihood (Tib-
shirani and Hastie 1987). Local methods such as local linear regression 
typically target a particular value of covariates, and use a kernel- weighting 
function to weight nearby observations more heavily when running a regres-
sion. The insight in Athey, Tibshirani, and Wager (2017) is that the random 
forest can be reinterpreted as a method to generate a weighting function, and 
the forest- based weighting function can substitute for the kernel- weighting 
function in a local linear estimation procedure. The advantages of the forest- 
weighting function are that it is data adaptive as well as model adaptive. 
It is data adaptive in that covariates that are important for heterogeneity 
in parameters of interest are given more importance in determining what 
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observations are “nearby.” It is model adaptive in that it focuses on hetero-
geneity in parameter estimates in a given model, rather than hetereogeneity 
in predicting the conditional mean of outcomes as in a traditional regres-
sion forest.

The insight of Athey, Tibshirani, and Wager (2017) is more general and I 
expect it to reappear in other papers in this literature: anyplace in traditional 
econometrics where a kernel function might have been used, ML methods 
that perform better than kernels in practice may be substituted. However, 
the statistical and econometric theory for the new methods needs to be estab-
lished in order to ensure that the ML- based procedure has desired properties 
such as asymptotic normality of parameter estimates. Athey, Tibshirani, 
and Wager (2017) does this for their generalized random forests for estimat-
ing heterogeneity in parameter estimates, and Hartford, Lewis, and Taddy 
(2016) use neural nets instead of kernels for semiparametric instrumental 
variables; Chernozhukov et al. (2017) does this for their generalization of 
Robinson (1988) semiparametric regression models.

There are also other possible approaches to estimating conditional aver-
age treatment eff ects when the structure of  the heterogeneity is assumed to 
take a simple form, or when the analyst is willing to understand treatment 
eff ects conditioning only on a subset of  covariates rather than attempting 
to condition on all relevant covariates. Targeted maximum likelihood (van 
der Laan and Rubin 2006) is one approach to this; more recently, Imai and 
Ratkovic (2013) proposed using LASSO to uncover heterogeneous treat-
ment eff ects, while Künzel et al. (2017) proposes an ML approach using 
“metalearners.” It is important to note, however, that if  there is insuffi  -
cient data to estimate the impact of  all relevant covariates; a model such 
as LASSO will tend to drop covariates (and their interactions) that are 
correlated with other included covariates, so that the included covariates 
“pick up” the impact of  omitted covariates.

Finally, a motivating goal for understanding treatment eff ects is estimat-
ing optimal policy functions; that is, functions that map from the observ-
able covariates of individuals to policy assignments. This problem has been 
recently studied in economics by, for example, Kitagawa and Tetenov (2015), 
who focus on estimating the optimal policy from a class of potential policies 
of limited complexity. The goal is to select a policy function to minimize the 
loss from failing to use the (infeasible) ideal policy, referred to as the “regret” 
of the policy. Despite the general lack of research about causal inference in 
the ML literature, the topic of optimal policy estimation has received some 
attention. However, most of the ML literature focuses on algorithmic inno-
vations, and does not exploit insights from the causal inference literature. 
An exception is that a line of research has incorporated the idea of pro-
pensity score weighting or doubly robust methods, although often without 
much reference to the statistics and econometrics literature. Examples of 
papers from the ML literature focused on policy learning include Strehl et al. 
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(2010), Dudik, Langford, and Li (2011), Li et al. (2012), Dudik et al. (2014), 
Li et al. (2014), Swaminathan and Joachims (2015), Jiang and Li (2016), 
Thomas and Brunskill (2016), and Kallus (2017). One type of result in that 
literature establishes bounds on the regret of the algorithm. In Athey and 
Wager (2017), we show how bringing in insights from semiparametric effi  -
ciency theory allows us to establish a tighter “regret bound” than the exist-
ing literature, thus narrowing down substantially the set of algorithms that 
might achieve the regret bound. This highlights the fact that the econometric 
theory literature has added value that has not been fully exploited in ML. 
Another unrelated observation is that, perhaps surprisingly, the economet-
rics of the problem of estimating optimal policy functions within a class of 
potential policies of limited complexity is quite diff erent from the problem 
of estimating conditional average treatment eff ects, although of course, the 
problems are related.

21.4.3  Contextual Bandits: Estimating Optimal 
Policies Using Adaptive Experimentation

Previously, I reviewed methods for estimating optimal policies mapping 
from individual covariates to treatment assignments. A growing literature 
based primarily in ML studies the problem of “bandits,” which are algo-
rithms that actively learn about which treatment is best. Online experimenta-
tion work yields large benefi ts when the setting is such that it is possible to 
quickly measure outcomes, and when there are many possible treatments. 
In the basic bandit problem when all units have identical covariates, the 
problem of “online experimentation,” or “multiarmed bandits,” asks the 
question of how experiments be designed to assign individuals to treatments 
as they arrive, using data from earlier individuals to determine the probabili-
ties of assigning new individuals to each treatment, balancing the need for 
exploration against the desire for exploitation. That is, bandits balance the 
need to learn against the desire to avoid giving individuals suboptimal treat-
ments. This type of online experimentation has been shown to yield reliable 
answers orders of magnitude faster than traditional randomized controlled 
trials in cases where there are many possible treatments (see, e.g., Scott 2010); 
the gain comes from the fact that treatments that are doing badly are eff ec-
tively discarded, so that newly arriving units are instead assigned to the best 
candidates. When the goal is to estimate an optimal policy, it is not necessary 
to continue to allocate units to treatments that are fairly certain not to be 
optimal. Further, it is also not important from the perspective of expected 
payoff s to statistically distinguish two very similar treatments. The litera-
ture has developed a number of heuristics for managing the explore- exploit 
trade- off ; for example, “Thompson sampling” allocates units to treatment 
arms in proportion to the estimated probability that each treatment arm is 
the best.

There is much less known about the setting where individuals have ob-
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served attributes, in which case the goal is to construct and evaluate per-
sonalized treatment assignment policies. This problem has been termed the 
“contextual bandit” problem, since treatment assignments are sensitive to 
the “context” (in this case, user characteristics). At fi rst, the problem seems 
very challenging because the space of possible policies is large and complex 
(each policy maps from user characteristics to the space of possible treat-
ments). However, if  the returns to each of the actions can be estimated as a 
function of individual attributes, a policy can be constructed by fi nding the 
action whose return is estimated to be highest, balanced against the need 
for exploration. Although there are a number of proposed methods for the 
contextual bandit problem in the literature already, there is relatively little 
known about how to select among methods and which ones are likely to 
perform best in practice. For example, the literature on optimal policy esti-
mation suggests that particular approaches to policy estimation may work 
better than others.

In particular, there are a variety of choices a researcher must make when 
selecting a contextual bandit algorithm. These include the choice of  the 
model that maps user characteristics to expected outcomes (where the lit-
erature has considered alternatives such as Ridge regression, Li et al. [2010]; 
ordinary least squares (OLS) Goldenshluger and Zeevi [2013]; generalized 
linear model (GLM) Li, Lu, and Zhou [2017]; LASSO, [Bastani and Bayati 
2015]; and random forests, Dimakopoulou, Athey, and Imbens [2017]; 
Feraud et al. [2016]). Another choice concerns the heuristic used to balance 
exploration versus exploitation, with leading choices Thompson Sampling 
and Upper Confi dence Bounds (UCB) (Chapelle and Li 2011).

Dimakopoulou, Athey, and Imbens (2017) highlights some issues that 
arise uniquely in the contextual bandit and that relate directly to the estima-
tion issues that have been the focus of the literature on estimation of treat-
ment eff ects (Imbens and Rubin 2015). For example, the paper highlights 
the comparison between noncontextual bandits, where there will be many 
future individuals arriving with exactly the same context (since they all share 
the same context), and contextual bandits, where each unit is unique. The 
assignment of a particular individual thus contributes to learning for the 
future indirectly indirectly, since the future individuals will have diff erent 
contexts (characteristics). The fact that the exploration benefi ts the future 
through a model of how contexts relates to outcomes changes the problem.

This discussion highlights a further theme for the connection between 
ML and causal inference: estimation considerations matter even more in the 
“small sample” settings of contextual bandits, where the assumption is that 
there is not enough data available to the policymaker to estimate perfectly 
the optimal assignment. However, we know from the econometrics literature 
that the small sample properties of diff erent estimators can vary substan-
tially across settings (Imbens and Rubin 2015), making it clear that the best 
contextual bandit approach is likely to also vary across settings.
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21.4.4 Robustness and Supplementary Analysis

In a recent review paper, Athey and Imbens (2017) highlights the impor-
tance of “supplementary analyses” for establishing the credibility of causal 
estimates in environments where crucial assumptions are not directly test-
able without additional information. Examples of supplementary analyses 
include placebo tests, whereby the analyst assses whether a given model is 
likely to fi nd evidence of treatment eff ects even at times where no treatment 
eff ect should be found. One type of supplementary analysis is a robustness 
measure. Athey and Imbens (2015) proposes to use ML- based methods to 
develop a range of diff erent estimates of a target parameter (e.g., a treatment 
eff ect), where the range is created by introducing interaction eff ects between 
model parameters and covariates. The robustness measure is defi ned as the 
standard deviation of parameter estimates across model specifi cations. This 
paper provides one possible approach to ML- based robustness measures, 
but I predict that more approaches will develop over time as ML methods 
become more popular.

Another type of ML- based supplementary analysis, proposed by Athey, 
Imbens, et al. (2017), uses ML- based methods to construct a measure of 
how challenging the confounding problem is in a particular setting. The 
proposed measure constructs an estimated conditional mean function for 
the outcome as well as an estimated propensity score, and then estimates the 
correlation between the two.

There is much more potential for supplementary analyses to be further 
developed; the fact that ML has well- defi ned, systematic algorithms for 
comparing a wide range of model specifi cations makes ML well suited for 
constructing additional robustness checks and supplementary analyses.

21.4.5 Panel Data and Diff erence- in-Diff erence Models

Another commonly used approach to identifying causal eff ects is to 
exploit assumptions about how outcomes vary across units and over time in 
panel data. In a typical panel- data setting, units are not necessarily assigned 
to a treatment randomly, but all units are observed prior to some units being 
treated; the identifying assumption is that one or more untreated units can 
be used to provide an estimate of the counterfactual time trend that would 
have occurred for the treated units in the absence of  the treatment. The 
simplest “diff erence- in-diff erence” case involves two groups and two time 
periods; more broadly, panel data may include many groups and many peri-
ods. Traditional econometric models for the panel- data case exploit func-
tional form assumptions, for example, assuming that a unit’s outcome in a 
particular time period is an additive function of a unit eff ect, a time eff ect, 
an independent shock. The unit eff ect can then be inferred for treated units 
in the pretreatment period, while the time eff ect can be inferred from the 
untreated units in the periods where some units receive the treatment. Note 
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that this structure implies that the matrix of  mean outcomes (with rows 
associated with units and columns associated with time) has a very simple 
structure: it has rank two.

There have been a few recent approaches bringing ML tools to the panel 
data setting. Doudchenko and Imbens (2016) develop an approach inspired 
by synthetic controls (pioneered by Abadie, Diamond, and Hainmueller 
2010), where a weighted average of  control observations is used to con-
struct the counterfactual untreated outcomes for treated units in treated 
periods. Doudchenko and Imbens (2016) propose using regularized regres-
sion to determine the weights, with the penalty parameter selected via cross- 
validation.

Factor Models and Matrix Completion

Another way to think about causal inference in a panel- data setting is to 
consider a matrix completion problem; Athey, Bayati, et al. (2017) propose 
taking such a perspective. In the ML literature, a matrix completion prob-
lem is one where there is an observed matrix of data (in our case, units and 
time periods), but some of the entries are missing. The goal is to provide 
the best possible prediction of what those entries should be. For the panel- 
data application, we can think of the units and time periods where the units 
are treated as the missing entries, since we don’t observe the counterfactual 
outcomes of those units in the absence of the treatment (this is the key bit 
of missing information for estimating the treatment eff ect).

Athey, Bayati, et al. (2017) propose using a matrix version of regularized 
regression to fi nd a matrix that well approximates the matrix of untreated 
outcomes (a matrix that has missing elements corresponding to treated units 
and periods). Recall that LASSO regression minimizes sum of  squared 
errors in sample, plus a penalty term that is proportional to the sum of the 
magnitudes of the coeffi  cients in the regression. We propose matrix regres-
sion that minimizes the sum of squared errors of all elements of the matrix, 
plus a penalty term proportional to the nuclear norm of the matrix. The 
nuclear norm is the sum of absolute values of the singular values of the 
matrix. A matrix that has a low nuclear norm is well approximated by a low 
rank matrix.

How do we interpret the idea that a matrix can be well approximated by a 
low- rank matrix? A low- rank matrix can be “factored” into the product of 
two matrices. In the panel- data case, we can interpret such a factorization as 
incorporating a vector of latent characteristics for each unit and a vector of 
latent characteristics of each period. The outcome of a particular unit in a 
particular period, if  untreated, is approximately equal to the inner product 
of the unit’s characteristics and the period characteristics. For example, if  
the data concerned employment at the county level, we can think of the 
counties as having outcomes that depend on the share of employment in dif-
ferent industries, and then each industry has common shocks in each period. 
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So a county’s latent characteristic would be the vector of industry shares, 
and the time characteristics would be industry shocks in a given period.

Athey, Bayati, et al. (2017) show that the matrix completion approach 
reduces to commonly employed techniques in the econometrics literature 
when the assumptions needed for those approaches hold, but the matrix 
completion approach is able to model more complex patterns in the data, 
while allowing the data (rather than the analyst) to indicate whether time- 
series patterns within units, or cross- sectional patterns within a period, or a 
more complex combination, are more useful for predicting counterfactual 
outcomes.

The matrix completion approach can be linked to a literature that has 
grown in the last two decades in time- series econometrics on factor models 
(see, e.g., Bai and Ng 2008 for a review). The matrix- factorization approach 
is similar, but rather than assuming that the true model has a fi xed but 
unknown number of factors, the matrix- completion approach simply looks 
for the best fi t while penalizing the norm of the matrix. The matrix is well 
approximated by one with a small number of  factors, but does not need 
to be exactly represented that way. Athey, Bayati, et al. (2017) describe a 
number of advantages of the matrix completion approach, and also show 
that it performs better than existing panel- data causal inference approaches 
in a range of settings.

21.4.6 Factor Models and Structural Models

Another important area of  connection between machine learning and 
causal inference concerns more complex structural models. For decades, 
scholars working at the intersection of  marketing and economics have built 
structural models of  consumer choice, sometimes in dynamic environ-
ments, and used Bayesian estimation to estimate the model, often Markov 
Chain Monte Carlo. Recently, the ML literature has developed a variety 
of  techniques that allow similar types of  Bayesian models to be estimated 
at larger scale. These have been applied to settings such as textual analysis 
and consumer choices of, for example, movies at Netfl ix. (See, for example, 
Blei, Ng, and Jordan [2003] and Blei [2012]). I expect to see much closer 
synergies between these two literatures in the future. For example, Athey, 
Blei, et al. (2017) builds on models of  hierarchical Poisson factorization 
to create models of  consumer demand, where a consumer’s preference 
over thousands of  products are considered simultaneously, but the con-
sumer’s choices in each product category are independent of  one another. 
The model reduces the dimensionality of  this problem by using a lower- 
dimensional factor representation of  a consumer’s mean utility as well as 
the consumer’s price sensitivity for each product. The paper establishes that 
substantial effi  ciency gains are possible by considering many product cate-
gories in parallel; it is possible to learn about a consumer’s price sensitivity 
in one product using behavior in other products. The paper departs from the 
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pure prediction literature in ML by evaluating and tuning the model based 
on how it does at predicting consumer responses to price changes, rather 
than simply on overall goodness of  fi t. In particular, the paper highlights 
that diff erent models would be selected for the “goodness of  fi t” objective 
as opposed to the “counterfactual inference” objective. In order to achieve 
this goal, the paper analyzes goodness of  fi t in terms of  predicting changes 
in demand for products before and after price changes, after providing 
evidence that the price changes can be treated as natural experiments after 
conditioning on week eff ects (price changes always occur mid- week). The 
paper also demonstrates the benefi ts of  personalized prediction, versus 
more standard demand estimation methods. Thus the paper again high-
lights the theme that for causal inference, the objective function diff ers from 
standard prediction.

With more scalable computational methods, it becomes possible to build 
much richer models with much less prior information about products. Ruiz, 
Athey, and Blei (2017) analyzes consumer preferences for bundles selected 
from over 5,000 items in a grocery store, without incorporating informa-
tion about which items are in the same category. Thus, the model uncovers 
whether items are substitutes or complements. Since there are 25,000 bundles 
when there are 5,000 products, in principle each individual consumer’s util-
ity function has 25,000 parameters. Even if  we restrict the utility function to 
have only pairwise interaction eff ects, there are still millions of parameters 
of a consumer’s utility function over bundles. Ruiz, Athey, and Blei (2017) 
uses a matrix- factorization approach to reduce the dimensionality of the 
problem, factorizing the mean utilities of the items, the interaction eff ects 
among items, and the user’s price sensitivity for the items. Price and availa-
bility variation in the data allows the model to distinguish correlated prefer-
ences (some consumers like both coff ee and diapers) from complementarity 
(tacos and taco shells are more valuable together). In order to further sim-
plify the analysis, the model assumes that consumers are boundedly ratio-
nal when they make choices, and consider the interactions among products 
as the consumer sequentially adds items to the cart. The alternative—that 
the consumer considers all 25,000 bundles and optimizes among them—does 
not seem plausible. Incorporating human computational constraints into 
structural models thus appears to be another potential fruitful avenue at 
the intersection of  ML and economics. In the computational algorithm 
for Ruiz, Athey, and Blei (2017), we rely on a technique called variational 
inference to approximate the posterior distribution, as well as the technique 
stochastic gradient descent (described in detail above) to fi nd the parameters 
that provide the best approximation.

In another application of similar methodology, Athey et al. (2018) ana-
lyzes consumer choices over lunchtime restaurants using data from a sample 
of  several thousand mobile phone users in the San Francisco Bay Area. 
The data is used to identify users’ typical morning location, as well as their 
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choices of lunchtime restaurants. We build a model where restaurants have 
latent characteristics (whose distribution may depend on restaurant observ-
ables, such as star ratings, food category, and price range), and each user 
has preferences for these latent characteristics, and these preferences are 
heterogeneous across users. Similarly, each item has latent characteristics 
that describe users’ willingness to travel to patronize the restaurant, and 
each user has individual- specifi c preferences for those latent characteristics. 
Thus, both users’ willingness to travel and their base utility for each restau-
rant vary across user- item pairs. To make the estimation computationally 
feasible, we build on the methods of Ruiz, Athey, and Blei (2017). We show 
that our model performs better than more standard competing models such 
as multi nomial logit and nested logit models, in part due to the personal-
ization of the estimates. We demonstrate in particular that our model per-
forms better when predicting consumer responses to restaurant openings 
and closings, and we analyze how consumers reallocate their demand after a 
restaurant closes to nearby restaurants versus more distant restaurants with 
similar characteristics. Since there are several hundred restaurant openings 
and closings in the data, we are able to use the large number of “natural 
experiments” in the data to assess performance of the model. Finally, we 
show how the model can be used to analyze questions involving counter-
factuals such as what type of restaurant would attract the most consumers 
in a given location.

Another recent paper that makes use of factorization in the context of 
a structural model of consumer demand is Wan et al. (2017). This paper 
builds a model of consumer choice that includes choices over categories, 
purchases within a category, and quantity to purchase. The model allows for 
individual heterogeneity in preferences, and uses factorization techniques 
to estimate the model.

21.5  Broader Predictions about the Impact 
of Machine Learning on Economics

My prediction is that there will be substantial changes in how empirical 
work is conducted; indeed, it is already happening, and so this prediction 
already can be made with a high degree of certainty. I predict that a number 
of changes will emerge, summarized as follows:

1. Adoption of off - the- shelf  ML methods for their intended tasks (pre-
diction, classifi cation, and clustering, e.g., for textual analysis).

2. Extensions and modifi cations of prediction methods to account for 
considerations such as fairness, manipulability, and interpretability.

3. Development of new econometric methods based on machine learning 
designed to solve traditional social science estimation tasks.

4. No fundamental changes to theory of identifi cation of causal eff ects.
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5. Incremental progress to identifi cation and estimation strategies for 
causal eff ects that exploit modern data settings including large- panel data 
sets and environments with many small experiments.

6. Increased emphasis on model robustness and other supplementary 
analysis to assess credibility of studies.

7. Adoption of new methods by empiricists at large scale.
8. Revival and new lines of research in productivity and measurement.
9. New methods for the design and analysis of large administrative data, 

including merging these sources and privacy- preserving methods.
10. Increase in interdisciplinary research.
11. Changes in organization, dissemination, and funding of economic 

research.
12. Economist as engineer engages with fi rms, government to design, and 

implement policies in digital environment.
13. Design and implementation of digital experimentation, both one- time 

and as an ongoing process, including multiarmed bandit experimentation 
algorithms, in collaboration with fi rms and government.

14. Research on developing high- quality metrics that can be measured 
quickly, in order to facilitate rapid incremental innovation and experimen-
tation.

15. Increased use of  data analysis in all levels of  economics teaching; 
increase in interdisciplinary data science programs.

16. Research on the impact of AI and ML on the economy.

This chapter has discussed the fi rst three predictions in some detail; I will 
now discuss each of the remaining predictions in turn.

First, as emphasized in the discussion about the benefi ts from using ML, 
ML is a very powerful tool for data- driven model selection. Getting the best 
fl exible functional form to fi t data is very important for many reasons; for 
example, when the researcher assumes that treatment assignment is uncon-
founded, it is still crucial to fl exibly control for covariates, and a vast litera-
ture has documented that modeling choices matter. A theme highlighted in 
this chapter is that ML can be used any time that semiparametric methods 
might have been used in the traditional econometrics literature. However, 
fi nding the best functional form is a distinct concern from whether an eco-
nomic parameter would be identifi ed with suffi  cient data. Thus, there is no 
obvious benefi t from ML in terms of thinking about identifi cation issues.

However, the types of data sets that are becoming widely available due 
to digitization suggest new identifi cation questions. For example, it is com-
mon for there to be frequent changes in algorithms in ecommerce platforms. 
These changes in algorithms create variation in user experiences (as well 
as in seller experiences in platforms and marketplaces). Thus, a typical 
user or seller may experience a large number of  changes, each of  which 
has modest eff ects. There are open questions about what can be learned in 
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such environments. From an estimation perspective, there is also room to 
develop ML- inspired algorithms that take advantage of the many sources 
of variation experienced by market participants. In my 2012 Fisher Schultz 
lecture, I illustrated the idea of using randomized experiments conducted 
by technology fi rms as instruments for estimating position eff ects for spon-
sored search advertisements. This idea has since been exploited more fully 
by others (e.g., Goldman and Rao 2014), but many open questions remain 
about the best ways to use the information in such data sets.

Digitization is also leading to the creation of many panel data sets that 
record individual behavior at relatively high frequency over a period of time. 
There are many open questions about how to make the best use of  rich 
panel data. Previously, we discussed several new papers at the intersection 
of ML and econometrics that made use of panel data (e.g., Athey, Bayati, 
et al. 2017), but I predict that this literature will grow dramatically over the 
next few years.

There are many reasons that empiricists will adopt ML methods at scale. 
First, many ML methods simplify a variety of arbitrary choices analysts 
needed to make. In larger and more complex data sets, there are many more 
choices. Each choice must be documented, justifi ed, and serves at a poten-
tial source of criticism of a paper. When systematic, data- driven methods 
are available, research can be made more principled and systematic, and 
there can be objective measures against which these choices can be evalu-
ated. Indeed, it would really be impossible for a researcher using traditional 
empirical methods to fully document the process by which the model specifi -
cation was selected; in contrast, algorithmic selection (when the algorithm is 
given the correct objective for the problem) has superior performance while 
simultaneously being reproducible. Second, one way to conceptualize ML 
algorithms is that they perform like automated research assistants—they 
work much faster and more eff ectively than traditional research assistants 
at exploring modeling choices, yet the methods that have been customized 
for social science applications also build in protections so that, for example, 
valid confi dence intervals can be obtained. Although it is crucial to con-
sider carefully the objective that the algorithms are given, in the end they 
are highly eff ective. Thus, they help resolve issues like “p- value hacking” by 
giving researchers the best of both worlds—superior performance as well as 
correct p- values that take into account the specifi cation- selection process. 
Third, in many cases, new results can be obtained. For example, if  an author 
has run a fi eld experiment, there is no reason not to search for heterogeneous 
treatment eff ects using methods such as those in Athey and Imbens (2016). 
The method ensures that valid confi dence intervals can be obtained for the 
resulting estimates of treatment eff ect heterogeneity.

Alongside the adoption of ML methods for old questions, new questions 
and types of  analyses will emerge in the fi elds of  productivity and mea-
surement. Some examples of these have already been highlighted, such as 
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the ability to measure economic outcomes at a granular level over a longer 
period of time, through, for example, imagery. Glaeser et al. (2018) pro-
vides a nice overview of how big data and ML will aff ect urban economics 
as a fi eld, as well as the operational effi  ciency of cities. More broadly, as 
governments begin to absorb high- frequency, granular data, they will need 
to grapple with questions about how to maintain the stability of  offi  cial 
statistics in a world where the underlying data changes rapidly. New ques-
tions will emerge about how to architect a system of measurement that 
takes advantage of high- frequency, noisy, unstable data, but yields statistics 
whose meaning and relationship with a wide range of economic variables 
remains stable. Firms will face similar problems as they attempt to forecast 
outcomes relevant to their own businesses using noisy, high- frequency data. 
The emerging literature in academics, government, and industry on “now- 
casting” in macroeconomics (e.g., Banbura et al. [2013] and ML begins to 
address some, but not all, of these issues). We will also see the emergence 
of new forms of descriptive analysis, some inspired by ML. Examples of 
these include techniques for describing association, for example, people who 
do A also do B; as well as interpretations and visualizations of the output 
of unsupervised ML techniques such as matrix factorization, clustering, 
and so on. Economists are likely to refi ne these methods to make them more 
directly useful quantiatively, and for business and policy decisions.

More broadly, the ability to use predictive models to measure economic 
outcomes at high granularity and fi delity will change the types of questions 
we can ask and answer. For example, imagery from satellites or Google’s 
street view can be used in combination with survey data to train models that 
can be used to produce estimates of economic outcomes at the level of the 
individual home, either within the United States or in developing countries 
where administrative data quality can be problematic (e.g., Jean et al. 2016; 
Engstrom, Hersh, and Newhouse 2017; Naik et al. 2014).

Another area of transformation for economics will be in the design and 
analysis of large- scale administrative data sets. We will see attempts to bring 
together disparate sources to provide a more complete view of individuals 
and fi rms. The behavior of individuals in the fi nancial world, the physical 
world, and the digital world will be connected, and in some cases ML will be 
needed simply to match diff erent identities from diff erent contexts onto the 
same individual. Further, we will observe behavior of individuals over time, 
often with high- frequency measurements. For example, children will leave 
digital footprints throughout their education, ranging from how often they 
check their homework assignments, the assignments themselves, comments 
from teachers, and so on. Children will interact with adaptive systems that 
change the material they receive based on their previous engagement and 
performance. This will create the need for new statistical methods, building 
on existing ML tools, but where the methods are more tailored to a panel- 
data setting with signifi cant dynamic eff ects (and possibly peer eff ects as 
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well; see, for some recent statistical advances designed around analyzing 
large scale network data, Ugander et al. 2013; Athey, Eckles, and Imbens 
2015; Eckles et al. 2016).

Another area of future research concerns how to analyze personal data 
without compromising user privacy. There is a literature in computer science 
around querying data while preserving privacy; the literature is referred to as 
“diff erential privacy.” Some recent research has brought together the com-
puter science literature with questions about estimating statistical models 
(see, e.g., Komarova, Nekipelov, and Yakovlev 2015).

I also predict a substantial increase in interdisciplinary work. Com-
puter scientists and engineers may remain closer to the frontier in terms of 
algorithm design, computational effi  ciency, and related concerns. As I will 
expand on further in a moment, academics of all disciplines will be gaining 
a much greater ability to intervene in the environment in a way that facili-
tates measurement and caual inference. As digital interactions and digital 
interventions expand across all areas of society, from education to health 
to government services to transportation, economists will collaborate with 
domain experts in other areas to design, implement, and evaluate changes 
in technology and policy. Many of these digital interventions will be pow-
ered by ML, and ML- based causal inference tools will be used to estimate 
personalized treatment eff ects of the interventions and design personalized 
treatment assignment policies.

Alongside the increase in interdisciplinary work, there will also be changes 
to the organization, funding, and dissemination of  economics research. 
Research on large data sets with complex data creation and analysis pipe-
lines can be labor intensive and also require specialized skills. Scholars who 
do a lot of complex data analysis with large data sets have already begun 
to adopt a “lab” model more similar to what is standard today in computer 
science and many natural sciences. A lab might include a postdoctoral fellow, 
multiple PhD students, predoctoral fellows (full- time research assistants 
between their bachelor’s and PhD), undergraduates, and possibly full- time 
staff . Of course, labs of this scale are expensive, and so the funding models 
for economics will need to adapt to address this reality. One concern is 
inequality of access to resources required to do this type of research, given 
that it is expensive enough that it cannot be supported given traditional 
funding pools for more than a small fraction of  economists at research 
universities.

Within a lab, we will see increased adoption of collaboration tools such as 
those used in software fi rms; tools include GitHub (for collaboration, ver-
sion control, and dissemination of software), as well as communication tools 
(e.g., my generalized random- forest software is available as an open source 
package on Github at http:// github .com/ swager/ grf, and users report issues 
through the GitHub, and can submit request to pull in proposed changes 
or additions to the code).
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There will also be an increased emphasis on documenation and repro-
ducibility, which are necessary to make a large lab function. This will hap-
pen even as some data sources remain proprietary. “Fake” data sets will 
be created that allow others to run a lab’s code and replicate the analysis 
(except not on the real data). As an example of institutions created to sup-
port the lab model, both Stanford GSB and the Stanford Institute for Eco-
nomic Policy Research have “pools” of predoctoral fellows that are shared 
among faculty; these programs provide mentorship, training, the opportu-
nity to take one class each quarter, and they also are demographically more 
diverse than graduate student populations. The predoctoral fellows have a 
special form of student status within Stanford. Other public- and private- 
sector research groups have also adopted similar programs, with Microsoft 
Research- New England an early innovator in this area, while individual 
researcheres at universities like Harvard and MIT have also been making 
use of predoctoral research assistants for a number of years.

We will also see changes in how economists engage with government, 
industry, education, and health. The concept of the “economist as engineer” 
promoted by market- design experts including Robert Wilson, Paul Mil-
grom, and Al Roth (Roth 2002), and even “economist as plumber” (Dufl o 
2017) will move beyond the fi elds of market design and development. As 
digitization spreads across application areas and sectors of the economy, it 
will bring opportunities for economists to develop and implement policies 
that can be delivered digitially. Farming advice, online education, health 
information and information, government- service provision, government 
collections, and personalized resource allocation—all of these create oppor-
tunities for economists to propose policies, design the delivery and imple-
mentation of the policy including randomization or staggered roll- outs to 
enable evaluation, and to remain involved through successive rounds of 
incremental improvement for adopted policies. Feedback will come more 
quickly and there will be more opportunities to gather data, adapt, and 
adjust. Economists will be involved in improving operational effi  ciency of 
government and industry, reducing costs, and improving outcomes.

Machine- learning methods, when deployed in practice in industry, gov-
ernment, education, and health, lend themselves to incremental improve-
ment. Standard practice in the technology industry is to evaluate incre-
mental improvements through randomized controlled trials. Firms like 
Google and Facebook do 10,000 or more randomized controlled trials 
of  incremental improvements to ML algorithms every year. An emerging 
trend is to build the experimentation right into the algorithm using bandit 
techniques. As described in more detail earlier, multiarmed bandit is a term 
for an algorithm that balances exploration and learning against exploiting 
information that is already available about which alternative treatment is 
best. Bandits can be dramatically faster than standard randomized con-
trolled experiments (see, e.g., the description of  bandits on Google’s web 
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site: https:// support.google .com/ analytics/ answer/ 2844870?hl=en) because 
they have a diff erent goal: the goal is to learn what the best alternative is, 
not to accurately estimate the average outcome for each alternative, as in a 
standard randomized controlled trial.

Implementing bandit algorithms requires the statistical analysis to be 
embedded in the system that delivers the treatments. For example, a user 
might arrive at a web site. Based on the user’s characteristics, a contextual 
bandit might randomize among treatment arms in proportion to the cur-
rent best estimate of the probability that each arm is optimal for that user. 
The randomization would occur “on the fl y” and thus the software for the 
bandit needs to be integrated with the software for delivering the treatments. 
This requires a deeper relationship between the analyst and the technology 
than a scenario where an analyst analyzes historical data “offl  ine” (that is, 
not in real time).

Balancing exploration and exploitation involves fundamental economic 
concepts about optimization under limited information and resource con-
straints. Bandits are generally more effi  cient and I predict they will come into 
much more widespread use in practice. In turn, that will create opportunities 
for social scientists to optimize interventions much more eff ectively, and to 
evaluate a large number of possible alternatives faster and with less ineffi  -
ciency. More broadly, statistical analysis will come to be commonly placed 
in a longer- term context where information accumulates over time.

Beyond bandits, other themes include combining experimental and obser-
vational data to improve precison of estimates (see, e.g., Peysakhovich and 
Lada 2016), and making use of large numbers of related experiments when 
drawing conclusions.

Optimizing ML algorithms require an objective or an outcome to opti-
mize for. In an environment with frequent and high- velocity experimenta-
tion, measures of success that can be obtained in a short time frame are 
needed. This leads to a substantively challenging problem: what are good 
measures that are related to long- term goals, but can be measured in the 
short term, and are responsive to interventions? Economists will get involved 
in helping defi ne objectives and constructing measures of success that can be 
used to evaluate incremental innovation. One area of research that is receiv-
ing renewed attention is the topic of “surrogates,” a name for intermediate 
measures that can be used in place of long- term outcomes (see, e.g., Athey 
et al. 2016). Economists will also place renewed interest on designing incen-
tives that counterbalance the short- term incentives created by short- term 
experimentation.

All of  these changes will also aff ect teaching. Anticipating the digital 
transformation of  industry and government, undergraduate exposure 
to programming and data will be much higher than it was ten years ago. 
Within ten years, most undergraduates will enter college (and most MBAs 
will enter business school) with extensive coding experience obtained from 
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elementary through high school, summer camps, online education, and 
internships. Many will take coding and data analysis in college, viewing 
these courses as basic preparation for the workforce. Teaching will need to 
change to complement the type of material covered in these other classes. 
In the short run, more students may arrive at econometrics classes thinking 
about data analysis from the perspective that all problems are prediction or 
classifi cation problems. They may have a cookbook full of  algorithms, but 
little intuition for how to use data to solve real- world problems or answer 
business or public policy questions. Yet, such questions are prevalent in the 
business world: fi rms want to know the return on investment on advertising 
campaigns,2 the impact of changing prices or introducing products, and so 
on. Economic education will take on an important role in educating stu-
dents in how to use data to answer questions. Given the unique advantages 
economics as a discipline has at these methods and approaches, many of the 
newly created data science undergraduate and graduate programs will bring 
in economists and other social scientists, creating an increased demand 
for teaching from empirical economists and applied econometricians. We 
will also see more interdisciplinary majors; Duke and MIT both recently 
announced joint degrees between computer science and economics. There 
are too many newly created data science master’s programs to mention, but 
a key observation is that while early programs most commonly have emerged 
from computer science and engineering, I predict that these programs will 
over time incorporate more social science, or else adopt and teach social 
science empirical methods themselves. Graduates entering the workforce 
will need to know basic empirical strategies like diff erence- in-diff erences 
that often arise in the business world (e.g., some consumers or areas are 
exposed to a treatment and not others, and there are important seasonality 
eff ects to control for).

A fi nal prediction is that we will see a lot more research into the societal 
impacts of machine learning. There will be large- scale, very important regu-
latory problems that need to be solved. Regulating the transportation infra-
structure around autonomous vehicles and drones is a key example. These 
technologies have the potential to create enormous effi  ciency. Beyond that, 
reducing transportation costs substantially eff ectively increases the supply 
of land and housing in commuting distance of cities, thus reducing housing 
costs for people who commute into cities to provide services for wealthier 
people. This type of reduction in housing cost would be very impactful for 
the cost of living for people providing services in cities, which could reduce 
eff ective inequality (which may otherwise continue to rise). But there are a 
plethora of policy issues that need to be addressed, ranging from insurance 

2. For example, several large technology companies employ economists with PhDs from 
top universities who specialize in evaluating and allocating advertising spend for hundreds of 
millions of dollars of expenditures; see Lewis and Rao (2015) for a description of some of the 
challenges involved.
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and liability, to safety policy, to data sharing, to fairness, to competition 
policy, and many others. Generally, the problem of how regulators approach 
algorithms that have enormous public impact is not at all worked out. Are 
algorithms regulated on outcomes, or on procedures and processes? How 
should regulators handle equilibrium eff ects, for example, if  one autono-
mous vehicle system makes a change to its driving algorithms, and how is 
that communicated to others? How can we avoid problems that have plagued 
personal computer software, where bugs and glitches are common following 
updates? How do we deal with the fact that having an algorithm used by 1 
percent of cars does not prove it will work when used by 100 percent of cars, 
due to interaction eff ects?

Another industry where regulation of  ML is already becoming prob-
lematic is fi nancial services. Financial- service regulation traditionally con-
cerned processes, rules, and regulations. There is not currently a framework 
for cost- benefi t analysis, or deciding how to test and evaluate algorithms, 
and determining an acceptable error rate. For algorithms that might have an 
eff ect on the economy, how do we assess systematic risks? These are fruitful 
areas for future research as well. And of course, there are crucial questions 
about how ML will aff ect the future of work, as ML is used across wider 
and wider swaths of the economy.

We will also see experts in the practice of machine learning and AI col-
laborate with diff erent subfi elds of economics in evaluating the impact of 
AI and ML on the economy.

Summarizing, I predict that economics will be profoundly transformed 
by AI and ML. We will build more robust and better- optimized statistical 
models, and we will lead the way in modifying the algorithms to have other 
desirable properties, ranging from protection against overfi tting and valid 
confi dence intervals, to fairness or nonmanipulability. The kinds of research 
we do will change; in particular, a variety of new research areas will open 
up, with better measurement, new methods, and diff erent substantive ques-
tions. We will grapple with how to reorganize the research process, which 
will have increased fi xed costs and larger- scale research labs, for those who 
can fund it. We will change our curriculum and take an important seat at 
the table in terms of  educating the future workforce with empirical and 
data science skills. And, we will have a whole host of new policy problems 
created by ML and AI to study, including the issues experienced by parts of 
the workforce who need to transition jobs when their old jobs are eliminated 
due to automation.

21.6 Conclusions

It is perhaps easier than one might think to make predictions about the 
impact of ML on economics, since many of the most profound changes are 
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well underway. There are exciting and vibrant research areas emerging, and 
dozens of applied papers making use of the methods. In short, I believe there 
will be an important transformation. At the same time, the automation of 
certain aspects of statistical algorithms does not change the need to worry 
about the things that economists have always worried about: is a causal 
eff ect really identifi ed from the data, are all confounders measured, what 
are eff ective strategies for identifying causal eff ects, what considerations are 
important to incorporate in a particular applied setting, defi ning outcome 
metrics that refl ect overall objectives, constructing valid confi dence inter-
vals, and many others. As ML automates some of the routine tasks of data 
analysis, it becomes all the more important for economists to maintain their 
expertise at the art of credible and impactful empirical work.
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