Chapter 11 Bias and Fairness
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Interest in algorithmic fairness and bias has been growing recently (for good reason), but it’s
easy to get lost in the large number of definitions and metrics. There are many different, often
competing, ways to measure whether a given model is statistically “fair” but it’s important to
remember to start from the social and policy goals for equity and fairness and map those to
the statistical properties we want in our models to help achieve those goals. In this chapter,
we provide an overview of these statistical metrics along with some concrete examples to
help navigate these concepts and understand the trade-offs involved in choosing to optimize
to one metric over others, focusing on the metrics relevant to binary classification methods

used frequently in risk-based models for policy settings.

11.1 Introduction

In Chapter Machine Learning, you learned about several of the concepts, tools, and
approaches used in the field of machine learning and how they can be applied in the social
sciences. In that chapter, we focused on evaluation metrics such as precision (positive
predictive value), recall (sensitivity), area-under-curve (AUC), and accuracy, that are often
used to measure the performance of machine learning methods. In most (if not all) public
policy problems, a key goal for the analytical systems being developed is to help achieve
equitable outcomes for society and we need to understand how to design systems that lead

to equity.

When machine learning models are being used to make decisions, they cannot be separated
from the social and ethical context in which they are applied, and those developing and

deploying these models must take care to do so in a manner that accounts for both accuracy
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and fairness. In this chapter, we will discuss sources of potential bias in the modeling
pipeline, as well as some of the ways that bias introduced by a model can be measured, with
a particular focus on classification problems. Unfortunately, just as there is no single machine
learning algorithm that is best suited to every application, no one fairness metric will fit every
situation. However, we hope this chapter will provide you with a grounding in the available
ways of measuring algorithmic fairness that will help you navigate the trade-offs involved

putting these into practice in your own applications.

11.2 Sources of Bias

Bias may be introduced into a machine learning project at any step along the way and it is
important to carefully think through each potential source and how it may affect your results.
In many cases, some sources may be difficult to measure precisely (or even at all), but this
doesn’t mean these potential biases can be readily ignored when developing interventions or

performing analyses.

11.2.1 Sample Bias

You’re likely familiar with sampling issues as a potential source of bias in the contexts of
causal inference and external validity in the social science literature. A biased sample can be
just as problematic for machine learning as it can be for inference, and predictions made on
individuals or groups not represented in the training set are likely to be unreliable. As such,
any application of machine learning should start with a careful understanding of data
generating process for the training and test sets. What is the relevant population for the
project and how might some individuals be incorrectly excluded or included from the data

available for modeling or analysis?

If there is a mismatch between the available training data and the population to whom the
model will be applied, you may want to consider whether it is possible to collect more
representative data. A model to evaluate the risk of health violations at restaurants may be of
limited applicability if the only training data available is based on inspections that resulted

from reported complaints. In such a case, an initial trial of randomized inspections might



provide a more representative dataset. However, this may not always be possible. For
instance, in the case of bail determinations, labeled data will only be available for individuals

who are released under the existing system.

How does the available training data relate to the population that the model will be applied
to? If there is a mismatch here, is it possible to collect more appropriate data? In the example
of bail determination, for instance, you only have subsequent outcome data for individuals
who were actually released in the past and lack the counterfactual/potential outcomes for

those who were detained.

Even if the training data matches the population, are their underlying systemic biases involved
in defining that population in general? For instance, over-policing of black neighborhoods
might mean the population of incarcerated individuals is unrepresentative of the population of
individuals who have committed a given crime and even a representative sample of the jail

population might not be the appropriate universe for a given policy or social science question.

For data with a time component or models that will be deployed to aid future decisions, are
there relevant policy changes in the past that may make data from certain periods of time less

relevant? Pending policy changes going forward that may affect the modeling population?

Measurement here might be difficult, but it is nevertheless helpful to think through each of
these questions in detail. Often, other sources of data (even in aggregate form) can provide
some insight on how representative your data may be, including census data, surveys, and

academic studies in the relevant area.

11.2.2 Label (Outcome) Bias

Regardless of whether your dataset reflects a representative sample of the relevant
population for your intervention or analysis, there may also be bias inherent in the labels (that

is, the measured outcomes) associated with individuals in that data.

One mechanism by which bias may be introduced is in how the label/outcome itself is
defined. For instance, a study of recidivism might use a new arrest as an outcome variable
when it really cares about committing a new crime. However, if some groups are policed more

heavily than others, using arrests to define the outcome variable may introduce bias into the



system’s decisions. Similarly, a label that relies on the number of days an individual has been
incarcerated would reflect known biases in sentence lengths between black and white

defendants.

A related mechanism is measurement error. Even when the outcome of interest is well-defined
and can be measured directly, bias may be introduced through differential measurement
accuracy across groups. For instance, data collected through survey research might suffer
from language barriers or cultural differences in social desirability that introduce measurement

errors across groups.

11.2.3 Machine Learning Pipeline Bias

Biases can be introduced by the handling and transformation of data throughout the machine
learning pipeline as well, requiring careful consideration as you ingest data, create features,
and model outcomes of interest. Below are a few examples at each stage of the process, but
these are far from exhaustive and intended only to help motivate thinking about how bias

might be introduced in your own projects.

**Ingesting Data:** The process of loading, cleaning, and reconciling data from a variety of
data sources (often referred to as ETL) can introduce a number of errors that might have

differential downstream impacts on different populations:

e Are your processes for matching individuals across data sources equally accurate across
different populations? For instance, married vs maiden names may bias match rates
against women, while inconsistencies in handling of multi-part last names may make

matching less reliable for hispanic individuals.

¢ Nickname dictionaries used in record reconciliation might be derived from different

populations than your population of interest.

¢ A data loading process that drops records with “special characters” might inadvertently

exclude names with accents or tildes.

Feature Engineering: Biases are easy to introduce during the process of constructing
features, both in the handling of features that relate directly to protected classes as well as

information that correlates with these populations (such as geolocation). A few examples


data:**

include:

e Dictionaries to infer age or gender from name might be derived from a population that is

not relevant to your problem.

e Handling of missing values and combining “other” categories can become problematic,

especially for multi-racial individuals or people with non-binary gender.

¢ Thought should be given to how race and ethnicity indicators are collected — are these
self-reported, recorded by a third party, or inferred from other data? The data collection

process may inform the accuracy of the data and how errors differ across populations.

e Features that rely on geocoding to incorporate information based on distances or
geographic aggregates may miss homeless individuals or provide less predictive power

for more mobile populations.

Modeling: The model itself may introduce bias into decisions made from its scores by
performing worse on some groups relative to others (many examples have been highlighted in
popular press recently, such as racial biases in facial recognition algorithms and gender
biases in targeting algorithms for job advertisement on social media). Because of the complex
correlation structure of the data, it generally isn’t sufficient to simply leave out the protected
attributes and assume this will result in fair outcomes. Rather model performance across
groups needs to be measured directly in order to understand and address any biases.
However, there are many (often incompatible) ways to define fairness and Section metrics will

take a closer look at these options in much more detail.

Much of the remainder of this chapter focuses on how we might define and measure fairness
at the level of the machine learning pipeline itself. In Section metrics, we will introduce several
of the metrics used to measure algorithmic fairness and in Section applications we discuss

how these can be used in the process of evaluating and selecting machine learning models.

11.2.4 Application Bias

A final potential source of bias worth considering is how the model or analysis might be put
into use in practice. One way this might happen is through heterogeneity in the effectiveness

of an intervention across groups. For instance, imagine a machine learning model to identify



individuals most at risk for developing diabetes in the next 3 years for a particular preventive
treatment. If the treatment is much more effective for individuals with a certain genetic
background relative to others, the overall outcome of the effort might be to exacerbate

disparities in diabetes rates even if the model itself is modeling risk in an unbiased way.

Likewise, it is important to be aware of the risk of discriminatory applications of a machine
learning model. Perhaps a model developed to screen out unqualified job candidates is only
“trusted” by a hiring manager for female candidates but often ignored or overridden for men.
In a perverse way, applying an unbiased model in such a context might serve to increase
inequities by giving bad actors more information with which to (wrongly) justify their

discriminatory practices.

While there may be relatively little you can do to detect or mitigate these types of bias at the
modeling stage, performing a trial to compare current practice with a deployed model can be
instructive where doing so is feasible. Keep in mind, of course, that the potential for machine
learning systems to be applied in biased ways shouldn’t be construed as an argument against
developing these systems at all any more than it would be reasonable to suggest that current
practices are likely to be free of bias. Rather, it is an argument for thinking carefully about
both the status quo and how it may change in the presence of such a system, putting in place
legal and technical safeguards to help ensure that these methods are applied in socially

responsible ways.

11.2.5 Considering Bias When Deploying Your Model

Ultimately, what we care about is some global idea of how putting a model into practice will
affect some overall concept of social welfare and fairness influenced by all of these possible
sources of bias. While this is generally impossible to measure in a quantitative way, it can
provide a valuable framework for qualitatively evaluating the potential impact of your model.
For most of the remainder of this chapter, we consider a set of more quantitative metrics that
can be applied to the predictions of a machine learning pipeline specifically, but it is important
to keep in mind that these metrics only apply to the sample and labels you have and ignoring
other sources of bias that may be at play in the underlying data generating process could
result in unfair outcomes even when applying a model that appears to be “fair” by your

chosen metric.



11.3 Dealing with Bias

11.3.1 Define Bias

Section bias examples provided some examples for how bias might be introduced in the
process of using machine learning to work with a dataset. While far from exhaustive as a
source of potential bias in an overall application, these biases can be more readily measured
and addressed through choices made during data preparation, modeling, and model
selection. This section focuses on detecting and understanding biases introduced at this

stage of the process.

One key challenge, however, is that there is no universally-accepted definition of what it
means for a model to be fair. Take the example of a model being used to make bail

determinations. Different people might consider it “fair” if:
¢ |t makes mistakes about denying bail to an equal number of white and black individuals

e The chances that a given black or white person will be wrongly denied bail is equal,

regardless of race

e Among the jailed population, the probability of having been wrongly denied bail is

independent of race

e For people who should be released, the chances that a given black or white person will

be denied bail is equal

In different contexts, reasonable arguments can be made for each of these potential
definitions, but unfortunately, not all of them can hold at the same time. The remainder of this

section explores these competing options and how to approach them in more detail.

11.3.2 Definitions

Most of the metrics used to assess model fairness relate either to the types of errors a model
might make or how predictive the model is across different groups. For binary classification

models (which we focus on here), these are generally derived from values in the confusion



matrix (see Figure 7.9 and Chapter Machine Learning for more details):

¢ True Positives (I'P) are individuals for whom both the model prediction and actual

outcome are positive labels.

e False Positives (F'P) are individuals for whom both the model predicts a positive label,

but the actual outcome is a negative label.

¢ True Negatives (1'N) are individuals for whom both the model prediction and actual

outcome are negative labels.

¢ False Negatives (F'N) are individuals for whom both the model predicts a negative label,

but the actual outcome is a positive label.

Based on these four categories, we can calculate several ratios that are instructive for
thinking about the equity of a model’s predictions in different situations (Sections punitive

example and assistive example provide some detailed examples here):

¢ False Positive Rate (F'PR) is the fraction of individuals with negative actual labels who

the model misclassifies with a positive predicted label.”®

e False Negative Rate (F'/NVR) is the fraction of individuals with positive actual labels who

the model misclassifies with a negative predicted label.”"

¢ False Discovery Rate (F'DR) is the fraction of individuals who the model predicts to

have a positive label but for whom the actual label is negative.92

¢ False Omission Rate (F'OR) is the fraction of individuals who the model predicts to

have a negative label but for whom the actual label is positive.93

¢ Precision is the fraction of individuals who the model predicts to have a positive label

about whom this prediction is correct.””

¢ Recall is the fraction of individuals with positive actual labels who the model has
correctly classified as such.”?

For the first two metrics (F'PR and F'N R), notice that the denominator is based on actual
outcomes (rather than model predictions), while in the next two (F'DR and FFOR) the

denominator is based on model predictions (whether an individual falls above or below the
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threshold used to turn model scores into 0/1 predicted classes). The final two metrics relate
to correct predictions rather than errors, but are directly related to error measurements (that
is, recall = 1 — FFNR and precision = 1 — F'DR) and may sometimes have better

properties for calculating model bias.

Notice that the metrics defined here require the use of a threshold to turn modeled scores into
0/1 predicted classes and are therefore most useful when either a threshold is well-defined for
the problem (e.g., when available resources mean a program can only serve a given number
of individuals) or where calculating these metrics at different threshold levels might be used
(along with model performance metrics) to choose a threshold for application. In some cases,
it may also be of interest to think about equity across the full distribution of the modeled
score (Chouldechova 2017; Kleinberg, Mullainathan, and Raghavan 2017). Common practices
in these situations are to look at how model performance metrics such as the area under the
receiver-operator curve (AUC — ROC) or model calibration compared across subgroups
(such as by race, gender, age). Or, in cases where the underlying causal relationships are well-
known, counterfactual methods (Kilbertus et al. 2017; Kusner et al. 2017) may also be used to
assess a model’s bias (these methods may also be useful when you suspect label bias to be
an issue in your data). We don’t explore these topics deeply here, but refer you out to the

relevant references if you would like to learn more.

11.3.3 Choosing Bias Metrics

Any of the metrics defined above can be used to calculate disparities across groups in your
data and (unless you have a perfect model) many of them cannot be balanced across
subgroups at the same time. As a result, one of the most important — and frequently most
challenging — aspects of measuring bias in your machine learning pipeline is simply

understanding how “fairness” should be defined for your particular case.

In general, this requires consideration of the project’s goals and a detailed discussion
between the data scientists, decision makers, and those who will be affected by the
application of the model. Each perspective may have a different concept of fairness and a
different understanding of harm involved in making different types of errors, both at individual
and societal levels. Importantly, data scientists have an critical role in this conversation, both

as the experts in understanding how different concepts of fairness might translate into



metrics and measurement and as individuals with experience deploying similar models. While
there is no universally correct definition of fairness, nor one that can be learned from the data,
this doesn’t excuse the data scientists from responsibility for taking part in the conversation
around fairness and equity in their models and helping decision makers understand the

options and trade-offs involved.

Practically speaking, coming to an agreement on how fairness should be measured in a
purely abstract manner is likely to be difficult. Often it can be instructive instead to explore
different options and metrics based on preliminary results, providing tangible context for
potential trade-offs between overall performance and different definitions of equity and
helping guide stakeholders through the process of deciding what to optimize. The remainder
of this section looks at some of the metrics that may be of particular interest in different types

of applications:

e |f your intervention is punitive in nature (e.g., determining whom to deny bail), individuals
may be harmed by intervening on them in error so you may care more about metrics that
focus on false positives. Section punitive example provides an example to guide you

through what some of these metrics mean in this case.

¢ |f your intervention is assistive in nature (e.g., determining who should receive a food
subsidy), individuals may be harmed by failing to intervene on them when they have
need, so you may care more about metrics that focus on false negatives Section assistive
example provides an example to guide you through metrics that may be applicable in this

case.

¢ |f your resources are significantly constrained such that you can only intervene on a small
fraction of the population at need, some of the metrics described here may be of limited

use and Section constrained assistive describes this case in more detail.

Navigating the many options for defining bias in a given context is a difficult and nuanced
process, even for those familiar with the underlying statistical concepts. In order to help
facilitate these conversations between data scientists and stakeholders, we developed the
Fairness Tree depicted in Figure 11.1. While it certainly can’t provide a single “right” answer
for a given context, our hope is that the Fairness Tree can act as a tool to help structure the

process of arriving at an appropriate metric (or set of metrics) to focus on.



Are your interventions
punitive or assistive?

Punitive Assistive
(could hurt individuals) (will help individuals)

Can you intervene with
most people with need
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Small Fraction Most People

4
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most concerned with ensuring most concerned with ensuring
predictive equity? predictive equity?

Everyone w/o regard People for whom Intervention Everyone w/o regard People NOT People with
for actual outcome intervention is taken NOT warranted for actual need receiving assistance actual need

A\ 4 v

FDR Parity FPR Parity Recall Parity* FOR Parity

Figure 11.1: Fairness Tree

11.3.4 Punitive Example

When the application of a risk model is punitive in nature, individuals may be harmed by being
incorrectly included in the “high risk” population that receives an intervention. In an extreme
case, we can think of this as incorrectly detaining an innocent person in jail. Hence, with

punitive interventions, we focus on bias and fairness metrics based on false positives.

11.3.4.1 Count of False Positives

We might naturally think about the number of people wrongly jailed from each group as
reasonable place to start for assessing whether our model is biased. Here, we are concerned
with statements like “twice as many people from Group A were wrongly convicted as from

Group B.”
In probabilistic terms, we could express this as:
P(wrongly jailed, group i) = C Vi

Where C is a constant value. Or, alternatively,
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Where F'P; is the number of false positives in group 4.

However, it is unclear whether differences in the number of false positives across groups
reflect unfairness in the model. For instance, if there are twice as many people in Group A as
there are in Group B, some might deem the the situation described above as fair from the
standpoint that the composition of the false positives reflects the composition of the groups.
This brings us to our second metric:

11.3.4.2 Group Size-Adjusted False Positives

By accounting for differently sized groups, we ask the question, “just by virtue of the fact that
an individual is a member of a given group, what are the chances they’ll be wrongly
convicted?”

In terms of probability,
P(wrongly jailed | group i) = C Vi
Where C'is a constant value. Or, alternatively,

FP, _ n; Vi
FP, n; @7

Where F'P; is the number of false positives and n; the total number of individuals in group ¢.

While this metric might feel like it meets a reasonable criteria of avoiding treating groups
differently in terms of classification errors, there are other sources of disparities we might care
about as well. For instance, suppose there are 10,000 individuals in Group A and 30,000 in
Group B. Suppose further that 100 individuals from each group are jail, with 10 Group A
people wrongly convicted and 30 Group B people wrongly convicted. We’ve balanced the
number of false positives by group size (0.1% for both groups) so there are no disparities as
far as this metric is concerned, but note that 10% of the jailed Group A individuals are
innocent compared to 30% of the jailed Group B individuals. The next metric is concerned

with unfairness in this way:



11.3.4.3 False Discovery Rate

The False Discovery Rate (F'DR) focuses specifically on the people who are affected by the
intervention—in the example above, among the 200 people in jail, what are the group-level
disparities in rates of wrong convictions. The jail example is particularly instructive here as we
could imagine the social cost of disparities manifesting directly through inmates observing

how frequently different groups are wrongly convicted.
In probabilistic terms,

P(wrongly jailed | jailed, group i) = C' V1
Where C is a constant value. Or, alternatively,

FP, ki
FP, &

J

Vi,

Where F'P; is the number of false positives and k; the total number of jailed individuals in

group 1.

11.3.4.4 False Positive Rate

The False Positive Rate (F'PR) focuses on a different subset, specifically, the individuals who
should not be subject to the intervention. Here, this would ask, “for an innocent person, what
are the chances they will be wrongly convicted by virtue of the fact that they’re a member of a

given group?”
In probabilistic terms,

P(wrongly jailed | innocent, group i) = C' Vi
Where C'is a constant value. Or, alternatively,

FP, n,-x(l—pi)

= Vi,j
FP;, n;x(1-p))

Where F'P,; is the number of false positives, n; the total number of individuals, and p; is the

prevalence (here, rate of being truly guilty) in group <.



The difference between the choosing to focus on the F'PR and group size-adjusted false

positives is somewhat nuanced and warrants highlighting:

e Having no disparities in group size-adjusted false positives implies that, if | were to
choose a random person from a given group (regardless of group-level crime rates or
their individual guilt or innocence), | would have the same chance of picking out a

wrongly convicted person across groups.

e Having no disparities in F'PR implies that, if | were to choose a random innocent person

from a given group, | would have the same chance of picking out a wrongly convicted
person across groups.

11.3.4.5 Trade-Offs in Metric Choice

By way of example, imagine you have a society with two groups (A and B) and a criminal

process with equal F'DR and group-size adjusted false positives with:

e Group A has 1000 total individuals, of whom 100 have been jailed with 10 wrongfully
convicted. Suppose the other 900 are all guilty.

e Group B has 3000 total individuals, of whom 300 have been jailed with 30 wrongfully
convicted. Suppose the other 2700 are all innocent.

In this case,

FP, 10

= =1.
ny 1000 0%
FDR, = ﬂ = 10.0%
A7 700
10
FPR, = 0= 100.0%

while,



FPg 30

— = 1.
ng 3000 0%
FDRp = 52 — 10.0%
B7300 7
30
FPRy= — =1.1
R = 2730 %

That is,

e A randomly chosen individual has the same chance (1.0%) of being wrongly convicted
regardless of which group they belong to

¢ |n both groups, a randomly chosen person who is in jail has the same chance (10.0%) of
actually being innocent

e HOWEVER, an innocent person in Group A is certain to be wrongly convicted, nearly 100

times the rate of an innocent person in Group B

While this is an exaggerated case for illustrative purposes, there is a more general principle at
play here, namely: when prevalences differ across groups, disparities cannot be eliminated
from both the F'PR and group-size adjusted false positives at the same time (in the absence

of perfect prediction).

While there is no universal rule for choosing a bias metric (or set of metrics) to prioritize, it is
important to keep in mind that there are both theoretical and practical limits on the degree to

which these metrics can be jointly optimized.

Balancing these trade-offs will generally require some degree of subjective judgment on the
part of policy makers and should reflect both societal values arrived at with the input of those
impacted by model-assisted decisions as well as practical constraints. For instance, if there is
uncertainty in the quality of the labels (e.g., how well can we truly measure the size of the
innocent population?), it may make more sense in practical terms to focus on the group-size
adjusted false positives than F'PR.

11.3.5 Assistive Example



By contrast to the punitive case, when the application of a risk model is assistive in nature,
individuals may be harmed by being incorrectly excluded from the “high risk” population that
receives an intervention. Here, we use identifying families to receive a food assistance benefit
as a motivating example. Where the punitive case focused on errors of inclusion through false
positives, most of the metrics of interest in the assistive case focus on analogues that

measure errors of omission through false negatives.

11.3.5.1 Count of False Negatives

A natural starting point for understanding whether a program is being applied fairly is to count
how many people it is missing from each group, focusing on statements like “twice as many
families with need for food assistance from Group A were missed by the benefit as from

Group B.”
In probabilistic terms, we could express this as:

P(missed by benefit, group i) = C V1
Where C is a constant value. Or, alternatively,

FN,
FN,

=1 Vi,j

Where F'N; is the number of false negatives in group ¢.

Differences in the number of false negatives by group, however, may be relatively limited in
measuring equity when the groups are very different in size. If there are twice as many families
in Group A as in Group B in the example above, the larger number of false negatives might

not be seen as inequitable, which motivates our next metric:

11.3.5.2 Group Size-Adjusted False Negatives

To account for differently sized groups, one way of phrasing the question of fairness is to ask,
“just by virtue of the fact that an individual is a member of a given group, what are the

chances they will be missed by the food subsidy?”

That is, in terms of probability,



P(missed by benefit | groupi) = C Vi
Where C'is a constant value. Or, alternatively,

FN;  n; Vi

Where F'N; is the number of false negatives and n, the total number of families in group %.

While avoiding disparities on this metric focuses on the reasonable goal of treating different
groups similarly in terms of classification errors, we may also want to directly consider two
subsets within each group: (1) the set of families not receiving the subsidy, and (2) the set of
families who would benefit from receiving the subsidy. We take a closer look at each of these

cases below.

11.3.5.3 False Omission Rate

The False Omission Rate (F'OR) focuses specifically on people on whom the program
doesn’t intervene — in our example, the set of families not receiving the food subsidy. Such
families will either be true negatives (that is, those not in need of the assistance) or false
negatives (that is, those who did need assistance but were missed by the program), and the

FOR asks what fraction of this set fall into the latter category.
In probabilistic terms,

P(missed by program | no subsidy, groupi) = C Vi
Where C'is a constant value. Or, alternatively,

Vi,j

Where F'N; is the number of false negatives, k; the number of families receiving the subsidy,

and n; is the total number of families in group 2.

In practice, the FFOR can be a useful metric in many situations, particularly because need
can often be more easily measured among individuals not receiving a benefit than among

those who do (for instance, when the benefit affects the outcome on which need is



measured). However, when resources are constrained such that a program can only reach a
relatively small fraction of the population, its utility is more limited. See constrained assistive

for more details on this case.

11.3.5.4 False Negative Rate

The False Negative Rate (F'N R) focuses instead on the set of people with need for the
intervention. In our example, this asks the question, “for a family that needs food assistance,
what are the chances they will be missed by the subsidy by virtue of the fact they’re a

member of a given group?”
In probabilistic terms,
P(missed by subsidy | need assistance, groupi) = C Vi

Where C is a constant value. Or, alternatively,

FN;, n;Xp; Vi, j

Where F'N; is the number of false negatives, n; the total number of individuals, and p; is the

prevalence (here, rate of need for food assistance) in group 2.

As with the punitive case, there is some nuance in the difference between choosing to focus

on group-size adjusted false negatives and the F'IN R that are worth pointing out:

e Having no disparities in group size-adjusted false negatives implies that, if | were to
choose a random family from a given group (regardless of group-level nutritional
outcomes or their individual need), | would have the same chance of picking out a family

missed by the program person across groups.

e Having no disparities in I’ N R implies that, if | were to choose a random family with need
for assistance from a given group, | would have the same chance of picking out one

missed by the subsidy across groups.

e Unfortunately, disparities in both of these metrics cannot be eliminated at the same time,
except where the level of need is identical across groups or in the generally unrealist case

of perfect prediction.



11.3.6 Special Case: Resource-Constrained Programs

In many real-world applications, programs may only have sufficient resources to serve a small
fraction of individuals who might benefit. In these cases, some of the metrics described here
may prove less useful. For instance, where the number of individuals served is much smaller
than the number of individuals with need, the false omission rate will converge on the overall

prevalence, and it will prove impossible to balance F'*OR across groups.

In such cases, group-level recall may provide a useful metric for thinking about equity, asking
the question, “given that the program cannot serve everyone with need, is it at least serving

different populations in a manner that reflects their level of need?”
In probabilistic terms,
P(received subsidy | need assistance, group i) = C Vi

Where C'is a constant value. Or, alternatively,

TP, _ n; Xp; Vi, j

Where T'P; is the number of true positives, n; the total number of individuals, and p; is the

prevalence (here, rate of need for food assistance) in group %.

Note that, unlike the metrics described above, using recall as an equity metric doesn’t
explicitly focus on the mistakes being made by the program, but rather on how it is
addressing need within each group. Nevertheless, balancing recall is equivalent to balancing
the false negative rate across groups (note that recall = 1 — F'IN R), but may be a more
well-behaved metric for resource-constrained programs in practical terms. When the number
of individuals served is small relative to need, F'N R will approach 1 and ratios between
group-level F'N R values will not be particularly instructive, while ratios between group-level

recall values will be meaningful.

As an aside, a focus on recall can also provide a lever that a program can use to consider
options for achieving programmatic or social goals. For instance, if underlying differences in
prevalence across groups is believed to be a result of social or historical inequities, a program

may want to go further than balancing recall across groups, focusing even more heavily on



historically under-served groups. One rule of thumb we have used in these cases is to
balance recall relative to prevalence (however, there’s no theoretically “right” choice here and
it’s generally best to consider a range of options):

recall; ; .
- = & v (ZW)

recall; Dj
The idea here is that (assuming the program is equally effective across groups), balancing
recall will seek to improve outcomes at an equal rate across groups without impacting
underlying disparities while a heavier focus on previously under-served groups might seek to

both improve outcomes across groups while attempting to close these gaps as well.

11.4 Mitigating Bias

The metrics described in this chapter can be put to use in a variety of ways: auditing existing
models and processes for equitable results, in the process of choosing a model to deploy, or
in making choices about how a chosen model is put into use. This section provides some

details about how you might approach each of these tasks.

11.4.1 Auditing Model Results

Because the metrics describe here rely only on the predicted and actual labels, no specific
knowledge of the process by which the predicted labels are determined is needed to make
use of them to assess bias and fairness in the results. Given this sort of labeled outcome data
for any existing or proposed process (and our knowledge of how trustworthy the outcomes

96 can be applied to help understand whether

data may be) , bias audit tools such as Aequitas
that process is yielding equitable results (for the various possible definitions of “equitable”

described above).

Note that the existing process need not be a machine learning model: these equity metrics
can be calculated for any set of decisions and outcomes, regardless of whether the decisions

are derived from a model, judge, case worker, heuristic rule, or other process. And, in fact, it



will generally be useful to make measures of equity in any existing processes which a model
might augment or replace to help understand whether application of the model might

improve, degrade, or leave unchanged the fairness of the existing system.

11.4.2 Model Selection

As described in Chapter Machine Learning, many different types of models (each in turn with
many tune-able hyperparameters) can be brought to bear on a given machine learning
problem, making the task of selecting a specific model to put into use an important step in
the process of model development. Chapter Machine Learning described how this might be
done by considering a model’s performance on various evaluation metrics, as well as how
consistent that performance is across time or random splits of the data. This framework for
model selection can naturally be extended to incorporate equity metrics, however doing so
introduces a layer of complexity in determining how to evaluate trade-offs between overall

performance and predictive equity.

Just as there is no one-size-fits-all metric for measuring equity that works in all contexts, you
might choose to incorporate fairness in the model selection process in a variety of different
ways. Here are a couple of options we have considered (though certainly not an exhaustive
list):

¢ |f many models perform similarly on overall evaluation metrics of interest (say, above

some reasonable threshold), how do they vary in terms of equitability?

e How much “cost” in terms of performance do you have to pay to reach various levels of
fairness? Think of this as creating a menu of options to explicitly show the trade-offs
involved. For instance, imagine your best-performing model has a precision of 0.75 but
FDR ratio of 1.3, but you can reach an FDR ratio of 1.2 by selecting a model with
precision of 0.73, or a ratio of 1.1 at a precision of 0.70, or FDR parity at a precision of
0.64.

¢ You may want to consider several of the equity metrics described above and might look
at the model that performs best on each metric of interest (perhaps above some overall

performance threshold) and consider choosing between these options.


https://textbook.coleridgeinitiative.org/chap-ml.html#chap:ml
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¢ |f you are concerned about fairness across several subgroups (e.g., multiple categories of
race/ethnicity, different age groups, etc), you might consider exploring the models that

perform best for each subgroup in addition to those that perform similarly across groups

e Another option might be to develop a single model selection parameter that penalizes
performance by how far a model is from equity and explore how model choice changes
based on how heavily you weight the equity parameter. Note, however, that when you are
comparing equity across more than two groups, you will need to find a means of
aggregating these to a single value (e.g., you might look at the average disparity, largest
disparity, or use some weighting scheme to reflect different costs of disparities favoring

different groups)

In most cases, this process will yield a number of options for a final model to deploy: some
with better overall performance, some with better overall equity measures, and some with
better performance for specific subgroups. Unlike model selection based on performance
metrics alone, the final choice between these will generally involve a judgment call that
reflects the project’s dual goals of balancing accuracy and equity. As such, the final choice of
model from this narrowed menu of options is best treated as a discussion between the data
scientists and stakeholders in the same manner as choosing how to define fairness in the first

place.

11.4.3 Other Options for Mitigating Bias

Beyond incorporating measurements of equity into your model selection process, they can
also inform how you put the model you choose into action. In general, disparities will vary as
you vary the threshold used for turning continuous scores into 0/1 predicted classes. While
many applications will dictate the total number of individuals who can be selected for
intervention, it may still be useful to consider lower thresholds. For instance, in one project we
saw large F'D R disparities across age and race in our models when selecting the top 150
individuals for an intervention (a number dictated by programmatic capacity), but these
disparities were mitigated by considering the top 1000 with relatively little cost in precision.
This result suggested a strategy for deployment: use the model to select the 1000 highest risk
individuals and randomly select 150 individuals from this set to stay within the program’s

capacity while balancing equity and performance.



Another approach that can work well in some situations is to consider using different
thresholds across groups to achieve more equitable results, which we explored in detail
through a recent case study (Rodolfa et al. 2020). This is perhaps most robust where the
metric of interest in monotonically increasing or decreasing with the number of individuals

chosen for intervention (such as recall). This can be formulated in two ways:

e For programs that have a target scale but may have some flexibility in budgeting, you can
look at to what extent the overall size of the program would need to increase to achieve
equitable results (or other fairness goals such as those described in constrained
assistive. In this case, interventions don’t need to be denied to any individuals in the
interest of fairness, but the program would incur some additional cost in order to achieve
a more equitable result.

e [f the program’s scale is a hard constraint, you may still be able to use subgroup-specific
thresholds to achieve more equitable results by selecting fewer of some groups and more
of others relative to the single threshold. In this case, the program would not need
additional costs of expansion, but some individuals who might have received the
intervention based just on their score would need to be substituted for individuals with

somewhat lower scores of under-represented subgroups.

As you’re thinking about equity in the application of your machine learning models, it’s also
particularly important to keep in mind that measuring fairness in a model’s predictions is only
a proxy for what you fundamentally care about: fairness in outcomes in the presence of the
model. As a model is put into practice, you may find that the program itself is more effective
for some groups than others, motivating either additional changes in your model selection
process or customizing interventions to the specific needs of different populations (or
individuals). Incorporating fairness into decisions about who is chosen to receive an
intervention is an important first step, but shouldn’t be mistaken for a comprehensive solution

to disparities in a program’s application and outcomes.

Some work is also being done investigating means for incorporating bias and fairness more
directly in the process of model development itself. For instance, in may cases different
numbers of examples across groups or unmeasured variables may contribute to a model
having higher error rates on some populations than others and additional data collection

(either more examples or new features) may help mitigate these biases where doing so is



feasible (Chen, Johansson, and Sontag 2018). Other work is being done to explore the results
of incorporating equity metrics directly into the loss functions used to train some classes of
machine learning models, making balancing accuracy and equity an aspect of model training
itself (Celis et al. 2019; Zafar et al. 2017). While we don’t explore these more advanced topics

in depth here, we refer you to the cited articles for more detail.

11.5 Further Considerations

11.5.1 Compared to What?

While building machine learning models that are completely free of bias is an admirable goal,
it may not always be an achievable one. Nevertheless, even an imperfect model may provide
an improvement over current practices depending on the degree of bias involved in existing
processes. It’s important to be cognizant of the existing context and make measurements of
equity for current practices as well as new algorithms that might replace or augment them.
The status quo shouldn’t be assumed to be free of bias because it is familiar any more than
algorithms should be assumed capable of achieving perfection simply because they are
complex. In practice, a more nuanced view is likely to yield better results: new models should
be rigorously compared with current results and implemented when they are found to yield

improvements but continually refined to improve on their outcomes over time as well.

11.5.2 Costs to Both Errors

In the examples in Section metrics, we focused on programs that could be considered purely
assistive or purely punitive to illustrate some of the relevant metrics for such programs. While
this classification may work for some real-world applications, in many others there will be
costs associated with both errors of inclusion and errors of exclusion that need to be
considered together in deciding both on how to think about fairness and how to put those
definitions into practice through model selection and deployment. For the bail example, there

are of course real costs to society both of jailing innocent people and releasing someone who



does, in fact, commit a subsequent crime. In many programs where individuals may be
harmed by being left out, errors of inclusion may mean wasted resources or even political

backlash about excessive budgets.

In theory, you might imagine being able to assign some cost to each type of error — as well
as to disparities in these errors across groups — and make a single, unified cost-benefit
calculation of the net result of putting a given model into application in a given way. In
practice, of course, making an even reasonable quantitative estimate of the individual and
social costs of these different types of errors is likely infeasible in most cases. Instead, a more
practical approach generally involves exploring a number of different options through different
choices of models and parameters and using these options to motivate a conversation about

the program’s goals, philosophy, and constraints.

11.5.3 What is the Relevant Population?

Related to the sample bias discussed in bias sources, understanding the relevant population
for your machine learning problem is important both to the modeling itself and to your
measures of equity. Calculation of metrics like the group-size adjusted false positive rate or

false negative rate will vary depending on who is included in the denominator.

For instance, imagine modeling who should be selected to receive a given benefit using data
from previous applicants and looking at racial equity based on these metrics. What population
is actually relevant to thinking about equity in this case? It might be the pool of applicants
available in your data, but it just as well might be the set of people who might apply if they
had knowledge of the program (regardless of whether or not they actually do), or perhaps
even the population at large (for instance, as measured by the census). Each of those choices
could potentially lead to different conclusions about the fairness of the program’s decisions
(either in the presence or absence of a machine learning model), highlighting the importance
of understanding the relevant population and who might potentially be left out of your data as
an element of how fairness is defined in your context. Keep in mind that determining (or at
least making a reasonable estimate of) the correct population may at times require collecting

additional data.



11.5.4 Continuous Outcomes

For the sake of simplicity, we focused here on binary classification problems to help illustrate
the sorts of considerations you might encounter when thinking about fairness in the
application of machine learning techniques. However, these considerations do of course

extend to other types of problems, such as regression models of continuous outcomes.

In these cases, bias metrics can be formulated around aggregate functions of the errors a
model makes on different types of individuals (such as the mean squared error and mean
absolute error metrics you are likely familiar with from regression) or tests for similarity of the
distributions of these errors across subgroups. Working with continuous outcomes adds an
additional layer of complexity in terms of defining fairness to account for the magnitude of the
errors being made (e.g., how do you choose between a model that makes very large errors on
a small number of individuals vs one that makes relatively small errors on a large number of

individuals?).

Unfortunately, the literature on bias and fairness in machine learning problems in other

contexts (such as regression with continuous outcomes) is less rich than the work focused on
classification, but if you would like to learn more about what has been done in this regard, we
suggest consulting (Chouldechova and Roth 2018) for a good starting point (see, in particular,

Section 3.5 of their discussion).

11.5.5 Considerations for Ongoing Measurement

The role of a data scientist is far from over when their machine learning model gets put into
production. Making use of these models requires ongoing curation, both to guard against
degradation in terms of performance or fairness as well as to constantly improve outcomes.
The vast majority of models you put into production will make mistakes, and a responsible
data scientist will seek to look closely at these mistakes and understand — on both individual
and population levels — how to learn from them to improve the model. Ensuring errors are
balanced across groups is a good starting point, but seeking to reduce these errors over time

is an important aspect of fairness as well.



One challenge you may face in making these ongoing improvements to your model is with
measuring outcomes in the presence of a program that seeks to change them. In particular,
the measurement of true positives and false positives in the absence of knowledge of a
counterfactual (that is, what would have happened in the absence of intervention) may be
difficult or impossible. For instance, among families who have improved nutritional outcomes
after receiving a food subsidy, you may not be able to ascertain which families’ outcomes
were actually helped by the program versus which would have improved on their own,
obfuscating any measure of recall you might use to judge performance or equity. Likewise, for
individuals denied bail, you cannot know if they actually would have fled or committed a
crime had they been released, making metrics like false discovery rate impossible to

calculate.

During a model’s pilot phase, initially making predictions without taking action or using the
model in parallel with existing processes can help mitigate some of these measurement
problems over the short term. Likewise, when resources are limited such that only a fraction
of individuals can receive an intervention, using some degree of randomness in the decision-
making process can help establish the necessary counterfactual. However, in many contexts,
this may not be practical or ethical, and you will need to consider other means for ongoing
monitoring of the model’s performance. Even in these contexts, however, it is important to
continually review the performance of the models and seek to both improve its performance
in terms of both equity and efficiency. In practice, this may include some combination of
considering proxies for the counterfactual, quasi-experimental inference methods, and
expert/stakeholder review of the model’s results (both in aggregate and of selected individual

cases).

11.5.6 Equity in Practice

Much of the discussion here has been about fairness in the machine learning pipeline,
focused on the ways in which a model may be correct or incorrect in its predictions and how
these might vary across groups. As a responsible practitioner of data science, these issues
are no doubt important to understand and seek to get correct in your models, but
fundamentally they can only serve as a proxy for a bigger concept of fairness — ultimately, we
care about equity in terms of differences in outcomes across groups. Ensuring fairness in

decisions (whether made by machines, humans, or some combination) is an element of



achieving this goal, but neither is it the only element nor, in many cases, is it likely to be the
largest one. In the face of other potential sources of bias — sample, label, application,
historical, and societal — even fair decisions at the machine learning level may not lead to
equitable results in society and the decision-making process may need to compensate for
these other inequities. Some of these other sources of bias may be more challenging to
quantify or incorporate into models directly, but data scientists have a shared responsibility to
understand the broader context in which their models will be applied and seek equitable

outcomes in these applications.

11.5.7 Other Names You Might See

The metrics described here have been given a variety of names in the literature. While we
have tried to use language focused on the underlying statistics in this chapter, here are some

other names you might see for several of these metrics in the literature:

e Equalizing false discovery rates (F'DR) is sometimes referred to as predictive parity or
the “outcome test”. Note that the is mathematically equivalent to having equal precision

(also called positive predictive value) across groups.

e Equalizing false omission rates (F'OR) is mathematically equivalent to equalizing the

negative predictive value (N PV).

e When both FOR and F'DR are equal across groups at the same time, this is sometimes

referred to as sufficiency or conditional use accuracy equality.

e Equalizing the false negative rate (F'N R), which is equivalent to equalizing recall (also

called the true positive rate or sensitivity), is also sometimes called equal opportunity.

e Equalizing the false positive rates (F'PR), which is equivalent to equilizing the true

negative rate (also known as specificity), is sometimes called predictive equality.

e When both F'N R and F'PR is equal across groups (that is, when both equal
opportunity and predictive equality are satisfied), various authors have referred to this
as error rate balance, separation, equalized odds, conditional procedure accuracy

equality, or disparate mistreatment.



e When members of every group have an equal probability of being assigned to the
positive predictive class, this condition is referred to as group fairness, statistical
parity, equal acceptance rate, demographic parity, or benchmarking. When this true
up to the contributions of only a set of “legitimate” attributes allowed to affect the
prediction, this is called conditional statistical parity or conditional demographic

parity.

¢ One definition, termed treatment equality, suggests considering disparities in the ratio of

false negatives to false positives across groups.

e Metrics that look at the entirety of the score distribution across groups include AUC
parity and calibration (also called test fairness, matching conditional frequencies, or
under certain conditions, well-calibration). Similarly, balance for the positive class and
balance for the negative class look at average scores across groups among individuals

with positive or negative labels, respectively.

e Additional work is being done looking at the fairness through the lens of similarity
between individuals (Dwork et al. 2012; Zemel et al. 2013) and causal reasoning (Kilbertus
et al. 2017; Kusner et al. 2017).

As a field, we have yet to settle on a single widely-accepted terminology for thinking about
bias and fairness, but rather than get lost in competing naming conventions, we would
encourage you to focus on what disparities in the different underlying metrics actually mean

for how models you build might actually affect different populations in your particular context.

11.6 Case Studies

The active conversation about algorithmic bias and fairness in both the academic and popular
press has contributed to a more well-rounded evaluation of many of the models and
technologies that are already in everyday use. This section highlights several recent cases,
discussing them through the context of the metrics described above as well as providing

some resources for you to read further about each one.

11.6.1 Recidivism Predictions with COMPAS



Over the course of the last two decades, models of recidivism risk have been put into use in
many jurisdictions around the country. These models show a wide variation in methods (from
heuristic rule-based scores to machine learning models) and have been developed by a
variety of academic researchers, government employees, and private companies, many built
with little or no evaluation of potential biases (Desmarais and Singh 2013). Different
jurisdictions put these models to use in a variety of ways, including identifying individuals for
diversion & treatment programs, making bail determinations, and even in the course of

sentencing decisions.

In May 2016, journalists at ProPublica undertook an exploration of accuracy and racial bias in
these algorithms, focusing on one the commercial solutions called Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS), built by a company called
Northpointe (Julia Angwin and Jeff Larson and Surya Mattu and Lauren Kirchner 2016; Jeff
Larson and Surya Mattu and Lauren Kirchner and Julia Angwin 2016). Their analysis focused
on some of the errors made by the model, finding dramatic disparities between black and
white defendants: among black defendants who would did not end up with another arrest in
the subsequent two years, 45% were labeled by the system as high risk, almost twice the rate
for whites (23%). Likewise, among individuals who did recidivate within two years, 48% of

white defendants were labeled low risk, compared with 28% of black defendants.

Here, ProPublica was focusing on F'PR and F'N R metrics for their definition of fairness:
e.g., if you’re a person who, in fact, will not recidivate, do your chances of being mislabeled
as high risk by the model differ depending on your race? In their response (The Northpointe
Suite 2016), Northpointe argued that this was the wrong fairness metric in this context —
instead, they claimed, F'D R should be the focus: If the model labels you as high risk, do the
chances that it was wrong in doing so depend on your race? By this definition, COMPAS is
fair: 37% of black defendants labeled as high risk did not recidivate, compared to 41% of

white defendants. Table 11.1 summarizes these metrics for both racial groups.



Table 11.1: COMPAS Fairness Metrics

Metric Caucasian African American
False Positive Rate (F'PR) 23% 45%
False Negative Rate (FFN R) 48% 28%
False Discovery Rate (F'DR) 41% 37%

In a follow-up article in December 2016 (Julia Angwin and Jeff Larson 2016), the ProPublica
authors remarked on the surprising result that a model could be “simultaneously fair and
unfair.” The public debate around COMPAS also inspired a number of academic researchers
to look closer at these definitions of fairness, showing that in the presence of different base
rates, it would be impossible for a model to satisfy both definitions of fairness at the same
time. The case of COMPAS demonstrates the potentially dramatic impact of decisions about
how equity is defined and measured in real applications with considerable implications for
individual’s lives. It’s incumbent upon the researchers developing such a model, the
policymakers deciding to put it into practice, and the users making decisions based upon its
scores to understand and explore the options for measuring fairness as well as the trade-offs

involved in making that choice.

11.6.2 Facial Recognition

A growing number of applications for facial recognition software are being found, from
tagging friends in photos on social media to recognizing suspects by police departments, and
off-the-shelf software is available from several large technology firms, including Microsoft,
IBM, and Amazon. However, growth in the use of technologies has seen a number of
embarrassing stumbles related to how well they work across race along the way: In 2015,
Google released an automated image annotation app that mistakenly tagged several African
American users as gorillas (Conor Dougherty 2015); and a number of early applications
deployed on digital cameras would erroneously tell Asian users to open their eyes or fail to

detect users with darker skin tones entirely (Adam Rose 2010).



Despite the broad uses of these technologies, even in policing, relatively little work had been
done to quantify their racial bias prior to 2018 when a researcher at MIT’s Media Lab
undertook a study to assess racial bias in the ability to correctly detect gender of three
commercial facial recognition applications (developed by Microsoft, Face++, and IBM)
(Buolamwini and Gebru 2018). She developed a benchmark dataset reasonably well-balanced
across race and gender by collecting 1,270 photos of members of parliament in several
African and European nations, scoring each photo for skin tone using the Fitzpatrick Skin

Type classification system commonly used in dermatology.

The results of this analysis showed stark differences across gender and skin tone, focusing
on false discovery rates for predictions of each gender. Overall, F'D R was very low for
individuals predicted to be male in the dataset, ranging from 0.7% to 5.6% between systems,
while it was much higher among individuals predicted to be female (ranging from 10.7% to
21.3%). Notice that the models here are making a binary classification of gender, so
individuals with a score on one side of a threshold are predicted as male and on the other
side are predicted as female. The overall gender disparities seen here, then, indicate that at
least relative to this dataset, all three thresholds were chosen in such a way that the models
are more certain when making a prediction that an individual is male than making a prediction
that they are female. In theory, these thresholds could be readily tuned to produce a better
balance in errors, but Buolamwini notes that all three APIs provide only predicted classes
rather than the underlying scores, precluding users from choosing a different balance of error

rates by predicted gender.

The disparities were even more stark when considering skin tone and gender jointly. In
general model performance was much worse for individuals with darker skin tones than those
with lighter skin. Most dramatically, the F'D R for individuals with darker skin who were
predicted to be female ranged from 20.8% to 34.7%. At the other extreme, the largest FDR
for lighter-skinned individuals predicted to be male was under 1%. Table 11.2 shows these

results in more detail.



Table 11.2: F'D R Values By Skin Tone and Predicted Gender (F = Female, M = Male, D =
Dark Skin, L = Light Skin)

System All F AllM DF DM LF LM

Microsoft 10.7% 2.6% 20.8% 6.0% 1.7% 0.0%
Face++ 21.3% 0.7% 34.5% 0.7% 6.0% 0.8%
IBM 20.3% 5.6% 34.7% 12.0% 7.1% 0.3%

One factor contributing to these disparities is likely sample bias. While the training data used
for these particular commercial models is not available, many of the widely available public
data sets for developing similar facial recognition algorithms have been heavily skewed, with
as many as 80% of training images being of white individuals and 75% being of men.
Improving the representativeness of these data sets may be helpful, but wouldn’t eliminate
the need for ongoing studies of disparate performance of facial recognition across

populations that might arise from other characteristics of the underlying models as well.

These technologies also provide a case study for when policy makers might decide against
putting a given model to use for certain applications entirely. In 2019, the city of San
Francisco, CA, announced that it would become the first city in the country to ban the use of
facial recognition technologies entirely from city services, including its police department
(Drew Harwell 2019). There, city officials reached the conclusion that any potential benefits of
these technologies were outweighed by the combination of potential biases and overall
privacy concerns, with the city’s Board of Supervisors voting 8-1 to ban the technology. While
the debate around appropriate uses for facial recognition is likely to continue for some time
across jurisdictions, San Francisco’s decision highlights the role of legal and policy
constraints around how models are used in addition to ensuring that the models are fair when

and where they are applied.

11.6.3 Facebook Advertisement Targeting

Social media has created new opportunities for advertisers to quickly and easily target their
advertisements to particular subsets of the population. Additionally, regardless of this user-

specified targeting, these advertising platforms will make automated decisions about who is



shown a given advertisement, generally optimizing to some metric of cost efficiency. Recently,
however, these tools have begun to come under scrutiny surrounding the possibility that they
might violate US Civil Rights laws that make it illegal for individuals to be excluded from job or

housing opportunities on the basis of protected characteristics such as age, race, or sex.

Public awareness that Facebook’s tools allowed advertisers to target content based on these
protected characteristics began to form in 2016 with news reports highlighting the feature
(Julia Angwin and Terry Parris Jr. 2016). While the company initially responded that their
policies forbid advertisers from targeting ads in discriminatory ways, there were legitimate use
cases for these technologies as well, suggesting that the responsibility fell to the people
placing the ads. By 2018, however, it was clear that the platform was allowing some
advertisers to do just that and the American Civil Liberties Union filed a complaint of gender
discrimination with the US Equal Employment Opportunity Commission (Alexia Fernandez
Campbell 2018). The complaint pointed to 10 employers that had posted job ads targeted
exclusively to men, including positions such as truck drivers, tire salesmen, mechanics, and
security engineers. Similar concerns were cited by the US Department of Housing and Urban
Development in 2019 when it filed charges against the social media company alleging it had
served ads that violate the Fair Housing Act (Russell Brandom 2019). Responding to the
growing criticism, Facebook began to the limit the attributes advertisers could use to target

their content.

However, these limitations might not be sufficient in light of the platform’s machine learning
algorithms that are determining who is shown a given ad regardless of the specific targeting
parameters. Research performed by Ali and colleagues (2019), confirmed that the content of
an advertisement could have a dramatic impact on who it was served to despite broad
targeting parameters. Users who were shown a job posting for a position as a lumberjack
were more than 90% men and more than 70% white, while those seeing a posting for a
janitorial position were over 75% women and 65% black. Similarly wide variety was seen for
housing advertisements, ranging from an audience nearly 65% black in some conditions to
85% white in others. A separate study of placement of STEM career ads with broad targeting
found similar gender biases in actual impressions, with content shown to more men than

women (Lambrecht and Tucker 2019).



Unlike the other case studies described above, the concept of fairness for housing and job
advertisements is provided by existing legislation, focusing not on errors of inclusion or
exclusion, but rather on representativeness itself. As such, the metric of interest here is
disparity in the probability of being assigned to the predicted positive class (e.g., being shown
the ad) across groups, unrelated to potentially differential propensities of each group to
respond. To address these disparities, Facebook (as well as other ad servers) may need to
modify their targeting algorithms to directly ensure job and housing ads are shown to
members of protected groups at similar rates. This, in turn, would require a reliable
mechanism for determining whether a given ad is subject to these requirements, which poses
technical challenges in its own right. As of this writing, understanding how best to combat
discrimination in ad targeting is an ongoing area of research as well as an active public

conversation.

11.7 Aequitas - A Toolkit for Auditing Bias and

Fairness in Machine Learning Models

To help data scientists and policymakers make informed decisions about bias and fairness in
their applications, we developed Aequitas, an open source”’ bias and fairness audit toolkit
that was released in May 2018%%. It is an intuitive and easy to use addition to the machine
learning workflow, enabling users to seamlessly audit models for several bias and fairness
metrics in relation to multiple population sub-groups. Aequitas can be used directly as a
Python library, via command line interface or a web application, making it accessible and

friendly to a wide range of users (from data scientists to policymakers).

Because the concept of fairness is highly dependent on the particular context and
application, Aequitas provides comprehensive information on how its results should be used
in a public policy context, taking the resulting interventions and its implications into
consideration. It is intended to be used not just by data scientists but also policymakers,
through both seamless integration in the machine learning workflow as well as a web app

tailored for non-technical users auditing these models’ outputs.



In Aequitas, bias assessments can be made prior to model selection, evaluating the
disparities of the various models developed based on whatever training data was used to
tune it for its task. The audits can be performed prior to a model being operationalized, based
on operational data of how biased the model proved to be in holdout data. Or they can
involve a bit of both, auditing bias in an A/B testing environment in which limited trials of
revised algorithms are evaluated whatever biases were observed in those same systems in

prior production deployments.
Aequitas was designed to be used by two types of users:

1. Data Scientists and Al Researchers who are building systems for use in risk assessment
tools. They will use Aequitas to compare bias measures and check for disparities in

different models they are building during the process of model building and selection.

2. Policymakers who, before “accepting” an Al system to use in a policy decision, will run
Aequitas to understand what biases exist in the system and what (if anything) they need
to do in order to mitigate those biases. This process must be repeated periodically to

assess the fairness degradation through time of a model in production.

I[Aequitas in the larger context of the machine learning pipeline. Audits must be carried out
internally by data scientists before evaluation and model selection. Policymakers (or clients)
must audit externally before accepting a model in production as well as perform periodic

audits to detect any fairness degradation over time.

Store and

S
n-n Mﬂ
Policymaker Data Scientist

Figure 11.2: ML pipeline



Figure 11.2 puts Aequitas in the context of the machine learning workflow and shows which
type of user and when the audits must be made. The main goal of Aequitas is to standardize
the process of understanding model biases. By providing a toolkit for auditing by both data
scientists and decision makers, it makes it possible for these different actors to take bias and
fairness into consideration at all stages of decision-making in the modeling process: model
selection, whether or not to deploy a model, when to retrain, the need to collect more and

better data, and so on.

To get a more hands-on tutorial using Aequitas, take a look at the Aequitas Example Jupyter
Notebook.

References

Adam Rose. 2010. “Are Face-Detection Cameras Racist?”
http://content.time.com/time/business/article/0,8599,1954643,00.html. Accessed February
12, 2020.

Alexia Fernandez Campbell. 2018. “Women accuse Facebook of illegally posting job ads that
only men can see.” https://www.vox.com/business-and-
finance/2018/9/18/17874506/facebook-job-ads-discrimination. Accessed February 12, 2020.

Ali, Muhammad, Piotr Sapiezynski, Miranda Bogen, Aleksandra Korolova, Alan Mislove, and
Aaron Rieke. 2019. “Discrimination Through Optimization: How Facebooks Ad Delivery Can
Lead to Biased Outcomes.” Proceedings of the ACM on Human-Computer Interaction 3. New

York, NY, USA: Association for Computing Machinery.

Buolamwini, Joy, and Timnit Gebru. 2018. “Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification.” In Proceedings of the 1st Conference on
Fairness, Accountability and Transparency, edited by Sorelle A. Friedler and Christo Wilson,
81:77-91. Proceedings of Machine Learning Research. New York, NY, USA: PMLR.

Celis, L. Elisa, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi. 2019. “Classification
with Fairness Constraints: A Meta-Algorithm with Provable Guarantees.” In Proceedings of
the Conference on Fairness, Accountability, and Transparency, 319-28. FAT* 19. New York,

NY, USA: Association for Computing Machinery.


http://content.time.com/time/business/article/0,8599,1954643,00.html
https://www.vox.com/business-and-finance/2018/9/18/17874506/facebook-job-ads-discrimination

Chen, Irene, Fredrik D Johansson, and David Sontag. 2018. “Why Is My Classifier
Discriminatory?” In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, 3543-54. NIPS 18. Red Hook, NY, USA: Curran Associates, Inc.

Chouldechova, Alexandra. 2017. “Fair Prediction with Disparate Impact: A Study of Bias in
Recidivism Prediction Instruments.” Big Data 5 (2): 153-63.

Chouldechova, Alexandra, and Aaron Roth. 2018. “The Frontiers of Fairness in Machine
Learning.” arXiv Preprint arXiv:1810.08810.

Conor Dougherty. 2015. “Google Photos Mistakenly Labels Black People ’Gorillas’.”
https://bits.blogs.nytimes.com/2015/07/01/google-photos-mistakenly-labels-black-people-
gorillas/. Accessed February 12, 2020.

Desmarais, Sarah L, and Jay P Singh. 2013. “Risk Assessment Instruments Validated and
Implemented in Correctional Settings in the United States.” Lexington, KY: Council of State
Governments. http://csgjusticecenter.org/wp-content/uploads/2014/07/Risk-Assessment-

Instruments-Validated-and-Implemented-in-Correctional-Settings-in-the-United-States.pdf.

Drew Harwell. 2019. “San Francisco becomes first city in U.S. to ban facial-recognition
software.” https://www.washingtonpost.com/technology/2019/05/14/san-francisco-becomes-

first-city-us-ban-facial-recognition-software/. Accessed February 12, 2020.

Dwork, Cynthia, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012.
“Fairness Through Awareness.” In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, 214-26. ITCS 12. New York, NY, USA: Association for Computing
Machinery.

Jeff Larson and Surya Mattu and Lauren Kirchner and Julia Angwin. 2016. “How We Analyzed
the COMPAS Recidivism Algorithm.” https://www.propublica.org/article/how-we-analyzed-

the-compas-recidivism-algorithm. Accessed February 12, 2020.

Julia Angwin and Jeff Larson. 2016. “Bias in Criminal Risk Scores Is Mathematically
Inevitable, Researchers Say.” https://www.propublica.org/article/bias-in-criminal-risk-scores-

iIs-mathematically-inevitable-researchers-say. Accessed February 12, 2020.


https://bits.blogs.nytimes.com/2015/07/01/google-photos-mistakenly-labels-black-people-gorillas/
http://csgjusticecenter.org/wp-content/uploads/2014/07/Risk-Assessment-Instruments-Validated-and-Implemented-in-Correctional-Settings-in-the-United-States.pdf
https://www.washingtonpost.com/technology/2019/05/14/san-francisco-becomes-first-city-us-ban-facial-recognition-software/
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/bias-in-criminal-risk-scores-is-mathematically-inevitable-researchers-say

Julia Angwin and Jeff Larson and Surya Mattu and Lauren Kirchner. 2016. “Machine Bias.”
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.
Accessed February 12, 2020.

Julia Angwin and Terry Parris Jr. 2016. “Facebook Lets Advertisers Exclude Users by Race.”
https://www.propublica.org/article/facebook-lets-advertisers-exclude-users-by-race.
Accessed February 12, 2020.

Kilbertus, Niki, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik
Janzing, and Bernhard Schoélkopf. 2017. “Avoiding Discrimination Through Causal
Reasoning.” In Advances in Neural Information Processing Systems 30, 656-66. Curran
Associates, Inc.

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. 2017. “Inherent Trade-Offs in the
Fair Determination of Risk Scores.” In 8th Innovations in Theoretical Computer Science
Conference (ITCS 2017), edited by Christos H. Papadimitriou. Vol. 67. Dagstuhl, Germany:

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Kusner, Matt J, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. “Counterfactual
Fairness.” In Advances in Neural Information Processing Systems 30, 4066—76. Curran
Associates, Inc.

Lambrecht, Anja, and Catherine Tucker. 2019. “Algorithmic Bias? An Empirical Study of
Apparent Gender-Based Discrimination in the Display of Stem Career Ads.” Management
Science 65 (7): 2966-81.

Rodolfa, K., E. Salomon, L. Haynes, |I. Mendieta, J. Larson, and R. Ghani. 2020. “Predictive
Fairness to Reduce Misdemeanor Recidivism Through Social Service Interventions.” In

Proceedings of the ACM Conference on Fairness, Accountability, and Transparency (ACM
FAT*) 2020.

Russell Brandom. 2019. “Facebook has been charged with housing discrimination by the US
government.” https://www.theverge.com/2019/3/28/18285178/facebook-hud-lawsuit-fair-

housing-discrimination. Accessed February 12, 2020.


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/facebook-lets-advertisers-exclude-users-by-race
https://www.theverge.com/2019/3/28/18285178/facebook-hud-lawsuit-fair-housing-discrimination

The Northpointe Suite. 2016. “Response to ProPublica: Demonstrating accuracy equity and
predictive parity.” https://www.equivant.com/response-to-propublica-demonstrating-

accuracy-equity-and-predictive-parity/. Accessed February 12, 2020.

Zafar, Muhammad Bilal, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P. Gummadi.
2017. “Fairness Constraints: Mechanisms for Fair Classification.” In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, edited by Aarti Singh and
Jerry Zhu, 54:962-70. Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA:
PMLR.

Zemel, Rich, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013. “Learning Fair
Representations.” In Proceedings of the 30th International Conference on Machine Learning,
edited by Sanjoy Dasgupta and David McAllester, 28:325-33. Proceedings of Machine
Learning Research 3. Atlanta, Georgia, USA: PMLR.

90. FPR=FP/(FP+TN)«

91. FNR=FN/(FN +TP)«

92. FDR=FP/(FP+TP)«

93. FOR=FN/(FN +TN)«

94. precision = TP/(FP+TP)<
95. recall =TP/(FN + TP)«

96. https://github.com/dssg/aequitas<’
97. https://github.com/dssg/aequitas<’

98. https://twitter.com/datascifellows/status/994204100542783488


https://www.equivant.com/response-to-propublica-demonstrating-accuracy-equity-and-predictive-parity/
https://github.com/dssg/aequitas
https://github.com/dssg/aequitas
https://twitter.com/datascifellows/status/994204100542783488

0 Comments . Login ~

‘ Start the discussion...
dih

LOG IN WITH OR SIGN UP WITH DIsaus (2)
SortbyBest - © [2

Be the first to comment.

B4 Subscribe @ Privacy A Do Not Sell My Data


https://disqus.com/
https://disqus.com/home/inbox/
https://disqus.com/embed/comments/?base=default&f=big-data-and-social-science&t_u=https%3A%2F%2Ftextbook.coleridgeinitiative.org%2Fchap-bias.html&t_d=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&t_t=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&s_o=default#
https://disqus.com/embed/comments/?base=default&f=big-data-and-social-science&t_u=https%3A%2F%2Ftextbook.coleridgeinitiative.org%2Fchap-bias.html&t_d=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&t_t=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&s_o=default#
https://disqus.com/embed/comments/?base=default&f=big-data-and-social-science&t_u=https%3A%2F%2Ftextbook.coleridgeinitiative.org%2Fchap-bias.html&t_d=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&t_t=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&s_o=default#
https://disqus.com/embed/comments/?base=default&f=big-data-and-social-science&t_u=https%3A%2F%2Ftextbook.coleridgeinitiative.org%2Fchap-bias.html&t_d=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&t_t=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&s_o=default#
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/data-sharing-settings/
https://disqus.com/embed/comments/?base=default&f=big-data-and-social-science&t_u=https%3A%2F%2Ftextbook.coleridgeinitiative.org%2Fchap-bias.html&t_d=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&t_t=Chapter%2011%20Bias%20and%20Fairness%20%7C%20Big%20Data%20and%20Social%20Science&s_o=default#

