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INTRODUCTION TO THE  
AI INDEX REPORT 2022
Welcome to the fifth edition of the AI Index Report! The latest edition includes data from a broad set of academic, 
private, and nonprofit organizations as well as more self-collected data and original analysis than any previous 
editions, including an expanded technical performance chapter, a new survey of robotics researchers around the 
world, data on global AI legislation records in 25 countries, and a new chapter with an in-depth analysis of technical 
AI ethics metrics. 

The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to 
provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, 
and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The report 
aims to be the world’s most credible and authoritative source for data and insights about AI.

FROM THE CO -DIRECTORS
This year’s report shows that AI systems are starting to be deployed widely into the economy, but at the same time 
they are being deployed, the ethical issues associated with AI are becoming magnified. Some of this is natural—after 
all, we tend to care more about the ethical aspects of a given technology when it is being rolled out into the world. 
But some of it is bound up in the peculiar traits of contemporary AI—larger and more complex and capable AI systems 
can generally do better on a broad range of tasks while also displaying a greater potential for ethical concerns. 

This is bound up with the broad globalization and industrialization of AI—a larger range of countries are developing, 
deploying, and regulating AI systems than ever before, and the combined outcome of these activities is the creation 
of a broader set of AI systems available for people to use, and reductions in their prices. Some parts of AI are not very 
globalized, though, and our ethics analysis reveals that many AI ethics publications tend to concentrate on English-
language systems and datasets, despite AI being deployed globally. 

If anything, we expect the above trends to continue: 103% more money was invested in the private investment of AI 
and AI-related startups in 2021 than in 2020 ($96.5 billion versus $46 billion). 

Jack Clark and Ray Perrault
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Private investment in AI soared while investment concentration intensified:  
 •  The private investment in AI in 2021 totaled around $93.5 billion—more than double the total private 

investment in 2020, while the number of newly funded AI companies continues to drop, from 1051 companies in 
2019 and 762 companies in 2020 to 746 companies in 2021. In 2020, there were 4 funding rounds worth $500 
million or more; in 2021, there were 15. 

U.S. and China dominated cross-country collaborations on AI: 
 •  Despite rising geopolitical tensions, the United States and China had the greatest number of cross-country 

collaborations in AI publications from 2010 to 2021, increasing five times since 2010. The collaboration between 
the two countries produced 2.7 times more publications than between the United Kingdom and China—the second 
highest on the list.

Language models are more capable than ever, but also more biased: 
 •  Large language models are setting new records on technical benchmarks, but new data shows that larger models are 

also more capable of reflecting biases from their training data. A 280 billion parameter model developed in 2021 
shows a 29% increase in elicited toxicity over a 117 million parameter model considered the state of the art as 
of 2018. The systems are growing significantly more capable over time, though as they increase in capabilities, so 
does the potential severity of their biases.

The rise of AI ethics everywhere:  
 •  Research on fairness and transparency in AI has exploded since 2014, with a fivefold increase in related publications 

at ethics-related conferences. Algorithmic fairness and bias has shifted from being primarily an academic pursuit to 
becoming firmly embedded as a mainstream research topic with wide-ranging implications. Researchers with industry 
affiliations contributed 71% more publications year over year at ethics-focused conferences in recent years.

AI becomes more affordable and higher performing:  
 •  Since 2018, the cost to train an image classification system has decreased by 63.6%, while training times 

have improved by 94.4%. The trend of lower training cost but faster training time appears across other MLPerf task 
categories such as recommendation, object detection and language processing, and favors the more widespread 
commercial adoption of AI technologies. 

Data, data, data:  
 •  Top results across technical benchmarks have increasingly relied on the use of extra training data to set new state-of-

the-art results. As of 2021, 9 state-of-the-art AI systems out of the 10 benchmarks in this report are trained with 
extra data. This trend implicitly favors private sector actors with access to vast datasets. 

More global legislation on AI than ever:  
 •  An AI Index analysis of legislative records on AI in 25 countries shows that the number of bills containing “artificial 

intelligence” that were passed into law grew from just 1 in 2016 to 18 in 2021. Spain, the United Kingdom, and the 
United States passed the highest number of AI-related bills in 2021 with each adopting three. 

Robotic arms are becoming cheaper:  
 •  An AI Index survey shows that the median price of robotic arms has decreased by 46.2% in the past five years—

from $42,000 per arm in 2017 to $22,600 in 2021. Robotics research has become more accessible and affordable.

TOP TAKEAWAYS
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How to Cite This Report

Public Data and Tools

AI Index and Stanford HAI

Daniel Zhang, Nestor Maslej, Erik Brynjolfsson, John Etchemendy, Terah Lyons, James 
Manyika, Helen Ngo, Juan Carlos Niebles, Michael Sellitto, Ellie Sakhaee, Yoav Shoham, 
Jack Clark, and Raymond Perrault, “The AI Index 2022 Annual Report,” AI Index Steering 
Committee, Stanford Institute for Human-Centered AI, Stanford University, March 2022. 

The AI Index 2022 Annual Report by Stanford University is licensed under  
Attribution-NoDerivatives 4.0 International. To view a copy of this license,  
visit http://creativecommons.org/licenses/by-nd/4.0/.

The AI Index 2022 Report is supplemented by raw data and an interactive tool. We invite each 
reader to use the data and the tool in a way most relevant to their work and interests. 
 •  Raw data and charts: The public data and high-resolution images of all the charts in the 

report are available on Google Drive.
 •  Global AI Vibrancy Tool: We redesigned the Global AI Vibrancy Tool this year with a 

better visualization to compare up to 29 countries across 23 indicators.

The AI Index is an independent initiative at the  
Stanford Institute for Human-Centered Artificial Intelligence (HAI).  

We welcome feedback and new ideas for next year. 
Contact us at AI-Index-Report@stanford.edu.

The AI Index was conceived within the One Hundred Year Study on AI (AI100). 

http://creativecommons.org/licenses/by-nd/4.0/
https://drive.google.com/drive/folders/1LLHYjtZabHQHGrVpHOh9Ak-2rkP6d5Wj?usp=sharing 
https://aiindex.stanford.edu/vibrancy
http://hai.stanford.edu
mailto:AI-Index-Report%40stanford.edu?subject=
https://ai100.stanford.edu/
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CHAPTER 1:  RESEARCH AND DEVELOPMENT
 
•  Despite rising geopolitical tensions, the United States and China had the greatest number of cross-country 

collaborations in AI publications from 2010 to 2021, increasing five times since 2010. The collaboration between 
the two countries produced 2.7 times more publications than between the United Kingdom and China—the 
second highest on the list.

•  In 2021, China continued to lead the world in the number of AI journal, conference, and repository 
publications—63.2% higher than the United States with all three publication types combined. In the meantime, 
the United States held a dominant lead among major AI powers in the number of AI conference and repository 
citations. 

•  From 2010 to 2021, the collaboration between educational and nonprofit organizations produced the 
highest number of AI publications, followed by the collaboration between private companies and educational 
institutions and between educational and government institutions. 

•  The number of AI patents filed in 2021 is more than 30 times higher than in 2015, showing a compound 
annual growth rate of 76.9%.

CHAPTER 2:  TECHNICAL PERFORMANCE

•  Data, data, data: Top results across technical benchmarks have increasingly relied on the use of extra training 
data to set new state-of-the-art results. As of 2021, 9 state-of-the-art AI systems out of the 10 benchmarks 
in this report are trained with extra data. This trend implicitly favors private sector actors with access to vast 
datasets.

•  Rising interest in particular computer vision subtasks: In 2021, the research community saw a greater level 
of interest in more specific computer vision subtasks, such as medical image segmentation and masked-face 
identification. For example, only 3 research papers tested systems against the Kvasir-SEG medical imaging 
benchmark prior to 2020. In 2021, 25 research papers did. Such an increase suggests that AI research is 
moving toward research that can have more direct, real-world applications.

•  AI has not mastered complex language tasks, yet: AI already exceeds human performance levels on basic 
reading comprehension benchmarks like SuperGLUE and SQuAD by 1%–5%. Although AI systems are still 
unable to achieve human performance on more complex linguistic tasks such as abductive natural 
language inference (aNLI), the difference is narrowing. Humans performed 9 percentage points better on 
aNLI in 2019. As of 2021, that gap has shrunk to 1.

REPORT HIGHLIGHTS
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•  Turn toward more general reinforcement learning: For the last decade, AI systems have been able to master 
narrow reinforcement learning tasks in which they are asked to maximize performance in a specific skill, such 
as chess. The top chess software engine now exceeds Magnus Carlsen’s top ELO score by 24%. However, in 
the last two years AI systems have also improved by 129% on more general reinforcement learning tasks 
(Procgen) in which they must operate in novel environments. This trend speaks to the future development of 
AI systems that can learn to think more broadly. 

•  AI becomes more affordable and higher performing: Since 2018, the cost to train an image classification 
system has decreased by 63.6%, while training times have improved by 94.4%. The trend of lower training 
cost but faster training time appears across other MLPerf task categories such as recommendation, object 
detection and language processing, and favors the more widespread commercial adoption of AI technologies.

•  Robotic arms are becoming cheaper: An AI Index survey shows that the median price of robotic arms has 
decreased by 46.2% in the past five years—from $42,000 per arm in 2017 to $22,600 in 2021. Robotics 
research has become more accessible and affordable.

CHAPTER 3:  TECHNICAL AI  E THICS

•  Language models are more capable than ever, but also more biased: Large language models are setting new 
records on technical benchmarks, but new data shows that larger models are also more capable of reflecting 
biases from their training data. A 280 billion parameter model developed in 2021 shows a 29% increase in 
elicited toxicity over a 117 million parameter model considered the state of the art as of 2018. The systems 
are growing significantly more capable over time, though as they increase in capabilities, so does the potential 
severity of their biases.

•  The rise of AI ethics everywhere: Research on fairness and transparency in AI has exploded since 2014, with a 
fivefold increase in related publications at ethics-related conferences. Algorithmic fairness and bias has shifted 
from being primarily an academic pursuit to becoming firmly embedded as a mainstream research topic with 
wide-ranging implications. Researchers with industry affiliations contributed 71% more publications year 
over year at ethics-focused conferences in recent years.

•  Multimodal models learn multimodal biases: Rapid progress has been made on training multimodal language-
vision models which exhibit new levels of capability on joint language-vision tasks. These models have set new 
records on tasks like image classification and the creation of images from text descriptions, but they also reflect 
societal stereotypes and biases in their outputs—experiments on CLIP showed that images of Black people 
were misclassified as nonhuman at over twice the rate of any other race. While there has been significant 
work to develop metrics for measuring bias within both computer vision and natural language processing, this 
highlights the need for metrics that provide insight into biases in models with multiple modalities.
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CHAPTER 4: THE ECONOMY AND EDUCATION

•  New Zealand, Hong Kong, Ireland, Luxembourg, and Sweden are the countries or regions with the highest growth 
in AI hiring from 2016 to 2021.

•  In 2021, California, Texas, New York, and Virginia were states with the highest number of AI job postings in the 
United States, with California having over 2.35 times the number of postings as Texas, the second greatest. 
Washington, D.C., had the greatest rate of AI job postings compared to its overall number of job postings.

•  The private investment in AI in 2021 totaled around $93.5 billion—more than double the total private 
investment in 2020, while the number of newly funded AI companies continues to drop, from 1051 companies in 
2019 and 762 companies in 2020 to 746 companies in 2021. In 2020, there were 4 funding rounds worth $500 
million or more; in 2021, there were 15.

•  “Data management, processing, and cloud” received the greatest amount of private AI investment in 2021— 
2.6 times the investment in 2020, followed by “medical and healthcare” and “fintech.”

•  In 2021, the United States led the world in both total private investment in AI and the number of newly funded AI 
companies, three and two times higher, respectively, than China, the next country on the ranking.

•  Efforts to address ethical concerns associated with using AI in industry remain limited, according to a McKinsey 
survey. While 29% and 41% of respondents recognize “equity and fairness” and “explainability” as risks 
while adopting AI, only 19% and 27% are taking steps to mitigate those risks.

•  In 2020, 1 in every 5 CS students who graduated with PhD degrees specialized in artificial intelligence/
machine learning, the most popular specialty in the past decade. From 2010 to 2020, the majority of AI PhDs in 
the United States headed to industry while a small fraction took government jobs.

CHAPTER 5:  AI  POLICY AND GOVERNANCE

•  An AI Index analysis of legislative records on AI in 25 countries shows that the number of bills containing 
“artificial intelligence” that were passed into law grew from just 1 in 2016 to 18 in 2021. Spain, the United 
Kingdom, and the United States passed the highest number of AI-related bills in 2021, with each adopting three.

•  The federal legislative record in the United States shows a sharp increase in the total number of proposed bills 
that relate to AI from 2015 to 2021, while the number of bills passed remains low, with only 2% ultimately 
becoming law.

•  State legislators in the United States passed 1 out of every 50 proposed bills that contain AI provisions in 2021, 
while the number of such bills proposed grew from 2 in 2012 to 131 in 2021.

•  In the United States, the current congressional session (the 117th) is on track to record the greatest number of  
AI-related mentions since 2001, with 295 mentions by the end of 2021, half way through the session, 
compared to 506 in the previous (116th) session.
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Overview
Research and development is an integral force that drives the rapid progress 

of artificial intelligence (AI). Every year, a wide range of academic, industry, 

government, and civil society experts and organizations contribute to AI 

R&D via a slew of papers, journal articles, and other AI-related publications, 

conferences on AI or on particular subtopics like image recognition or 

natural language processing, international collaboration across borders, and 

the development of open-source software libraries. These R&D efforts are 

diverse in focus and geographically dispersed.

Another key feature of AI R&D, making it somewhat distinct from other areas 

of STEM research, is its openness. Each year, thousands and thousands of 

AI publications are released in the open source, whether at conferences 

or on file-sharing websites. Researchers will openly share their findings at 

conferences; government agencies will fund AI research that ends up in the 

open source; and developers use open software libraries, freely available to 

the public, to produce state-of-the-art AI applications. This openness also 

contributes to the globally interdependent and interconnected nature of 

modern AI R&D.

This first chapter draws on multiple datasets to analyze key trends in the 

AI research and development space in 2021. It first looks at AI publications, 

including conference papers, journal articles, patents, and repositories.  

It then analyzes AI conference attendance. And finally, it examines  

AI open-source software libraries used in the R&D process.

CHAPTER 1: RESEARCH & DEVELOPMENT
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CHAPTER HIGHLIGHTS

•  Despite rising geopolitical tensions, the United States and China had the greatest number of 
cross-country collaborations in AI publications from 2010 to 2021, increasing five times since 
2010. The collaboration between the two countries produced 2.7 times more publications 
than between the United Kingdom and China—the second highest on the list.

•  In 2021, China continued to lead the world in the number of AI journal, conference, and 
repository publications—63.2% higher than the United States with all three publication types 
combined. In the meantime, the United States held a dominant lead among major AI powers 
in the number of AI conference and repository citations. 

•  From 2010 to 2021, the collaboration between educational and nonprofit organizations 
produced the highest number of AI publications, followed by the collaboration between 
private companies and educational institutions and between educational and government 
institutions. 

•  The number of AI patents filed in 2021 is more than 30 times higher than in 2015, showing a 
compound annual growth rate of 76.9%.

CHAPTER 1: RESEARCH & DEVELOPMENT
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Figure 1.1.1

OVERVIEW 
The figures below capture the total number of English-
language AI publications globally from 2010 to 2021—by 
type, affiliation, cross-country collaboration, and cross-
industry collaboration. The section also breaks down 
publication and citation data by region for AI journal 
articles, conference papers, repositories, and patents.

1.1 PUBLICATIONS2

Total Number of AI Publications
Figure 1.1.1 shows the number of AI publications in 
the world. From 2010 to 2021, the total number of AI 
publications doubled, growing from 162,444 in 2010 to 
334,497 in 2021.

1  See the Appendix for more information on CSET’s methodology. Due to the change in data provider and classification method, the publication trend/data may be different from past reports. For more 
on the challenge of defining AI and correctly capturing relevant bibliometric data, see the AI Index team’s discussion in the paper “Measurement in AI Policy: Opportunities and Challenges.” 
2  The number of AI publications in 2021 in this section may be lower than the actual count due to the lag in the collection of publication metadata by aforementioned databases.

Chapter 1 PreviewTable of Contents

Artificial Intelligence
Index Report 2022

This section draws on data from the Center for Security and Emerging Technology (CSET) at Georgetown University. CSET maintains 
a merged corpus of scholarly literature that includes Digital Science’s Dimensions, Clarivate’s Web of Science, Microsoft Academic 
Graph, China National Knowledge Infrastructure, arXiv, and Papers with Code. In that corpus, CSET applied a classifier to identify 
English-language publications related to the development or application of AI and ML since 2010.1

1.1 Publications     
CHAPTER 1: RESEARCH & DEVELOPMENT

https://arxiv.org/abs/2009.09071
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By Type of Publication
Figure 1.1.2 shows the variation overtime in the types of 
AI publications released globally. In 2021, 51.5% of all AI 
documents published were journal articles, 21.5% were 
conference papers, and 17.0% were from repositories. 

Books, book chapters, theses, and unknown document 
types comprised the remaining 10.1% of publications. 
While journal and repository publications have grown 
2.5 and 30 times, respectively, in the past 12 years, the 
number of conference papers has declined since 2018.
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Figure 1.1.2
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By Field of Study
Figure 1.1.3 shows that publications in pattern recognition 
and machine learning have more than doubled since 2015. 

Other areas strongly influenced by deep learning, such 
as computer vision, data mining and natural language 
processing, have shown smaller increases.
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Figure 1.1.3

1.1 Publications     
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By Sector
This section shows the number of AI publications affiliated 
with industry, education, government, and nonprofit in 
the world (Figure 1.1.4a), China (Figure 1.1.4b), the United 
States (Figure 1.1.4c), and the European Union plus the 

United Kingdom (Figure 1.1.4d).3 The education sector 
dominates in each of the regions. The level of company 
participation is highest in the United States, then in the 
European Union. China is the only area in which the share 
of education has been rising.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0%

10%

20%

30%

40%

50%

60%

A
I P

ub
lic

at
io

ns
 (%

 o
f T

ot
al

)

20.77%, Unknown

11.27%, Nonpro t

3.17%, Government

59.58%, Education

5.21%, Company

AI PUBLICATIONS (% of TOTAL) by SECTOR, 2010–21
Source: Center for Security and Emerging Technology, 2021 | Chart: 2022 AI Index Report

Figure 1.1.4a

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0%

10%

20%

30%

40%

50%

60%

A
I P

ub
lic

at
io

ns
 (%

 o
f T

ot
al

)

17.63%, Unknown

12.36%, Nonpro t

2.62%, Government

57.63%, Education

9.76%, Company

AI PUBLICATIONS in UNITED STATES (% of TOTAL) by SECTOR, 2010–21
Source: Center for Security and Emerging Technology, 2021 | Chart: 2022 AI Index Report

Figure 1.1.4b
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3  The categorization is adapted based on the Global Research Identifier Database (GRID). See definitions of each category here. Healthcare, including hospitals and facilities, 
are included under nonprofit. Publications affiliated with state-sponsored universities are included in the education sector.
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Figure 1.1.4c
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Figure 1.1.4d
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Cross-Country Collaboration
Cross-border collaborations between academics, 
researchers, industry experts, and others are a key 
component of modern STEM development that accelerate 
the dissemination of new ideas and the growth of research 
teams. Figures 1.1.5a and 1.1.5b depict the top cross-
country AI collaborations from 2010 to 2021. CSET counted 
cross-country collaborations as distinct pairs of countries 
across authors for each publication (e.g., four U.S. and 
four Chinese-affiliated authors on a single publication are 
counted as one U.S.-China collaboration; two publications 
between the same authors counts as two collaborations). 

By far, the greatest number of collaborations in the past 
12 years took place between the United States and China, 
increasing five times since 2010. The next largest set of 
collaborations is between the United Kingdom and both the 
United States and China, which have increased more than 
three times since 2010. In 2021, the number of collaborations 
between the United States and China was 2.7 times greater 
than between the United Kingdom and China. 
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Figure 1.1.5a
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number of collaborations 
in the past 12 years 
took place between the 
United States and China, 
increasing five times 
since 2010.
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Cross-Sector Collaboration
The increase in AI research outside of universities has brought 
collaborations between universities and other industries. 
Figure 1.1.6 shows that in 2021, educational institutions 
and nonprofits had the greatest number of collaborations 

(29,839), followed by companies and educational institutions 
(11,576), and governments and educational institutions 
(8,087). There were 2.5 times as many collaborations 
between educational institutions and nonprofits in 2021 as 
between educational institutions and companies.
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Figure 1.1.6
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Figure 1.1.5b
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Figure 1.1.7
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Figure 1.1.8

AI JOURNAL PUBLICATIONS

Overview
After growing only slightly from 2010 to 2015, the 
number of AI journal publications grew almost 2.5 times 

since 2015 (Figure 1.1.7). As a percentage of all journal 
publications, as captured in Figure 1.1.8, AI journal 
publications in 2021 were about 2.5% of all publications, 
compared to 1.5% in 2010.
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Figure 1.1.9

By Region4

Figure 1.1.9 shows the share of AI journal publications 
by region between 2010 and 2021. In 2021, East Asia 
and Pacific leads with 42.9%, followed by Europe and 
Central Asia (22.7%) and North America (15.6%). In 
addition, South Asia and the Middle East and North 
Africa saw the most significant growth as their number 
of AI journal publications grew around 12 and 7 times, 
respectively, in the last 12 years.
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4 Regions in this chapter are classified according to the World Bank analytical grouping.

In addition, South Asia 
and the Middle East and 
North Africa saw the most 
significant growth as 
their number of AI journal 
publications grew around  
12 and 7 times, respectively, 
in the last 12 years.

https://datatopics.worldbank.org/world-development-indicators/images/figures-png/world-by-region-map.pdf
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Figure 1.1.10

By Geographic Area5

Figure 1.1.10 breaks down the share of AI journal 
publications over the past 12 years by three major AI 

powers. China has remained the leader throughout, with 
31.0% in 2021, followed by the European Union plus the 
United Kingdom at 19.1% and the United States at 13.7%
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5 Geographic areas in this chapter combine the number of publications between the European Union and the United Kingdom to reflect the historically strong association between them with regards to 
research collaboration.
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Figure 1.1.11

Citations
On the number of citations of AI journal 
publications, China’s share has gradually increased 
while those of the European Union plus the United 
Kingdom and the United States have decreased. 
The three geographic areas combined accounted for 
more than 66% of the total citations in the world. 

 

1.1 Publications     
CHAPTER 1: RESEARCH & DEVELOPMENT

The three geographic areas 
combined accounted for 
more than 66% of the total 
citations in the world. 
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Figure 1.1.12
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Figure 1.1.13

AI CONFERENCE PUBLICATIONS

Overview
The number of AI conference publications peaked in 
2019, and fell about 19.4% below the peak in 2021 

(Figure 1.1.12). Despite the decline in the total numbers, 
however, the share of AI conference publications among 
total conference publications in the world has increased 
by more than five percentage points since 2010 (Figure 
1.1.13).
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Figure 1.1.14

By Region
Figure 1.1.14 shows the number of AI conference 
publications by region. Similar to the trend in AI journal 
publication, East Asia and Pacific, Europe and Central 
Asia, and North America account for the world’s highest 
numbers of AI conference publications. Specifically, the 

share represented by East Asia and Pacific continues to 
rise since taking the lead in 2014, accounting for 40.4% 
in 2021, followed by Europe and Central Asia (23.0%) and 
North America (19.0%). The percentage of AI conference 
publications in South Asia saw a noticeable rise in the 
past 12 years, from 4.0% in 2010 to 10.4% in 2021.
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By Geographic Area
In 2021, China produced the greatest share of the world’s 
AI conference publications at 27.6%, opening an even 

greater lead than in 2020, while the European Union plus 
the United Kingdom followed at 19.0% and the United 
States came in third at 16.9% (Figure 1.1.15).
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Figure 1.1.15
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Figure 1.1.16

Citations
Despite China producing the most AI conference 
publications in 2021, Figure 1.1.16 shows that the United 
States led among the major powers with respect to 

the number of AI conference citations, with 29.5% in 
2021, followed by the European Union plus the United 
Kingdom (23.3%) and China (15.3%). 
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Figure 1.1.18
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Figure 1.1.17

AI REPOSITORIES

Overview
Publishing pre-peer-reviewed papers on repositories of 
electronic preprints (such as arXiv and SSRN) has become 
a popular way among AI researchers to disseminate their 

work outside traditional avenues for publications. Those 
repositories allow researchers to share their findings before 
submitting them to journals and conferences, which greatly 
accelerates the cycle of information discovery. The number 
of AI repository publications grew almost 30 times in the 
past 12 years (Figure 1.1.17), now account for 15.3% of all 
repository publications (Figure 1.1.18).
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Figure 1.1.19

By Region
The analysis by region in Figure 1.1.19 shows that North 
America has maintained a steady lead in the share of AI 

repository publications in the world since 2014 while that 
of Europe and Central Asia has declined. Since 2013, the 
share of East Asia and Pacific has grown significantly.
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Figure 1.1.20

By Geographic Area
While the United States has held the lead in the percentage 
of AI repository publications in the world since 2011, China 
is catching up while the European Union plus the United 
Kingdom’s share continues to drop (Figure 1.1.20). In 2021, 

the United States accounted for 32.5% of the world’s AI 
repository publications—a higher percentage compared 
to journal and conference publications, followed by the 
European Union plus the United Kingdom (23.9%) and 
China (16.6%).
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Figure 1.1.21

Citations
On the citations of AI repository publications, Figure 1.1.21 
shows that the United States tops the list with 38.6% 

of overall citations in 2021, establishing a dominant 
lead over the European Union plus the United Kingdom 
(20.1%) and China (16.4%). 
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Figure 1.1.22

AI PATENTS

This section draws on data from CSET and 1790 Analytics 
on patents relevant to AI development and applications—
indicated by Cooperative Patent Classification (CPC)/
International Patent Classification (IPC) codes and 
keywords. Patents were grouped by country and year and 
then counted at the “patent family” level, before CSET 
extracted year values from the most recent publication 
date within a family.

Overview
Figure 1.1.22 captures the number of AI patents filed from 
2010 to 2021. The number of patents filed in 2021 is more 
than 30 times higher than in 2015, showing a compound 
annual growth rate of 76.9%.
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The number of patents 
filed in 2021 is more 
than 30 times higher 
than in 2015, showing 
a compound annual 
growth rate of 76.9%.
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Figure 1.1.23a

By Region and Application Status
Figure 1.1.23a breaks down AI patent filings by region. 
The share of East Asia and Pacific took off in 2014 and 
led the rest of the world in 2021 with 62.1% of all patent 
applications, followed by North America and Europe and 

Central Asia. In terms of granted patents in those regions, 
North America leads with 57.0%, followed by East Asia 
and Pacific (31.0%), and Europe and Central Asia (11.3%) 
(Figure 1.1.23b). The other regions combine to make up 
roughly 1% of world patents (Figure 1.1.23c). 
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Figure 1.1.23c
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Figure 1.1.23b
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Figure 1.1.24a

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0%

10%

20%

30%

40%

50%

60%

70%

G
ra

nt
ed

 A
I P

at
en

ts
 (%

 o
f W

or
ld

 T
ot

al
)

 5.90%, China

 39.59%, United States

 7.56%, European Union and United Kingdom

GRANTED AI PATENTS (% of WORLD TOTAL) by GEOGRAPHIC AREA, 2010–21
Source: Center for Security and Emerging Technology, 2021 | Chart: 2022 AI Index Report

Figure 1.1.24b

By Geographic Area and Application Status
Trends revealed by the regional analysis can also be 
observed in AI patent data broken down by geographic 
area (Figure 1.1.24a and Figure 1.1.24b). China is now 
filing over half of the world’s AI patents and being granted 
about 6%, about the same as the European Union plus the 

United Kingdom. The United States, which files almost 
all the patents in North America, does so at one-third the 
rate of China. Figure 1.1.24c shows that compared to the 
increasing numbers of AI patents applied and granted, 
China has far greater numbers of patent applications 
(87,343 in 2021) than those granted (1,407 in 2021).
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Figure 1.1.24c
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Figure 1.2.1

CONFERENCE AT TENDANCE 
Similar to 2020, most AI conferences were offered 
virtually in 2021. Only the International Conference on 
Robotics and Automation (ICRA) and the Conference 
on Empirical Methods in Natural Language Processing 
(EMNLP) were held using a hybrid format. Conference 
organizers reported measuring the exact attendance 
numbers at a virtual conference is difficult, as virtual 
conferences allow for higher attendance of researchers 
from all around the world.

1.2 CONFERENCES
Figure 1.2.1 shows that attendance at top AI conferences 
in 2021 was relatively consistent with 2020, with more 
than 88,000 participants worldwide. Figure 1.2.2 and 
Figure 1.2.3 show the attendance data for individual 
conferences, with 16 major AI conferences split into 
two categories: large AI conferences with over 2,500 
attendees and small AI conferences with fewer than 
2,500 attendees.6

6  The International Conference on Machine Learning (ICML) used the number of session visitors as a proxy for the number of conference attendees, which explains the high attendance count in 2021. 
The International Conference on Intelligent Robots and Systems (IROS) extended the virtual conference to allow users to watch events for up to three months, which explains the high attendance count 
in 2020. For the AAMAS conference, the attendance in 2020 is based on the number of users on site reported by the platform that recorded the talks and managed the online conference, while the 2021 
number is for total registrants.
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AI conferences are key venues for researchers to publish and communicate their work, as well as to connect with peers and 
collaborators. Conference attendance is an indication of broader industrial and academic interest in a scientific field. In the past 
20 years, AI conferences have grown not only in size but also in number and prestige. This section presents data on the trends in 
attendance at major AI conferences, covering more conferences (16) than previous Index reports.

1.2 Conferences
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Figure 1.2.4

WOMEN IN MACHINE LEARNING 
(WIML) NEURIPS WORKSHOP
Founded in 2006, Women in Machine Learning is an 
organization dedicated to supporting and increasing 
the impact of women in machine learning. This section 
presents data from its annual technical workshop 
colocated with NeurIPS. Starting in 2020, WiML has also 
been hosting the Un-Workshop, which aims to advance 
research via collaboration and interaction among 
participants from diverse backgrounds at ICML.

Workshop Participants
The number of participants attending the WiML workshop 
has steadily increased since it was first introduced in 
2006. For the 2021 edition, Figure 1.2.4 shows an estimate 
of 1,486 attendees over all workshop sessions, counted 
as the number of unique individuals who accessed the 
virtual workshop platform at neurips.cc. The 2021 WiML 
Workshop at NeurIPS happened as multiple sessions 
over three days, which was a change in format from 2020. 
As in 2020, the workshop was held virtually due to the 
pandemic.

CHAPTER 1: RESEARCH & DEVELOPMENT
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Figure 1.2.5
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Figure 1.2.6

Demographics Breakdown
This section shows the continent of residence and 
professional position breakdowns of the 2021 workshop 
participants based on a survey filled by participants 
who consented to have such information aggregated. 
Among the survey respondents, more than half of the 
survey respondents were from North America, followed 

by Europe (19.9%), Asia (16.2%), and Africa (7.3%) (Figure 
1.2.5). Figure 1.2.6 shows that Ph.D. students made 
up almost half of the survey participants, while the 
share of university faculty is around 1.2%. Researcher 
scientists/engineers, data scientists/engineers, and 
software engineers were among the most commonly held 
professional positions.
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Figure 1.3.1

GITHUB STARS 
Figures 1.3.1 and 1.3.2 reflect the number of users of 
GitHub open-source AI software libraries from 2015 to 
2021. TensorFlow remained by far the most popular in 
2021, with around 161,000 cumulative GitHub stars—a 
slight increase over 2020. TensorFlow was about three 
times as popular in 2021 as the next-most-starred 

1.3 AI OPEN-SOURCE 
SOFTWARE LIBRARIES

GitHub open-source AI software library, OpenCV, which 
was followed by Keras, PyTorch, and Scikit-learn. 
Figure 1.3.2 shows library popularity for libraries with 
fewer than 40,000 GitHub stars—led by FaceSwap with 
around 40,000 stars, followed by 100-Days-Of-ML-Code, 
AiLearning, and BVLC/caffe.
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A software library is a collection of computer code that is used to create applications and products. Popular AI-specific software 
libraries—such as TensorFlow and PyTorch—help developers create their AI solutions quickly and efficiently. This section analyzes the 
popularity of software libraries through GitHub data.

1.3 AI Open-Source Software Libraries
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Figure 1.3.2
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Overview
This year, the technical performance chapter includes more analysis 

than ever before of the technical progress in various subfields of 

artificial intelligence, including trends in computer vision, language, 

speech, recommendation, reinforcement learning, hardware, and 

robotics. It uses a number of quantitative measurements, from 

common AI benchmarks and prize challenges to a field-wide survey, 

to highlight the development of top-performing AI systems. 

CHAPTER 2: TECHNICAL PERFORMANCE
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CHAPTER HIGHLIGHTS

•  Data, data, data: Top results across technical benchmarks have increasingly relied on the use of 
extra training data to set new state-of-the-art results. As of 2021, 9 state-of-the-art AI systems 
out of the 10 benchmarks in this report are trained with extra data. This trend implicitly favors 
private sector actors with access to vast datasets.

•  Rising interest in particular computer vision subtasks: In 2021, the research community saw 
a greater level of interest in more specific computer vision subtasks, such as medical image 
segmentation and masked-face identification. For example, only 3 research papers tested 
systems against the Kvasir-SEG medical imaging benchmark prior to 2020. In 2021, 25 
research papers did. Such an increase suggests that AI research is moving toward research that 
can have more direct, real-world applications.

•  AI has not mastered complex language tasks, yet: AI already exceeds human performance levels 
on basic reading comprehension benchmarks like SuperGLUE and SQuAD by 1%–5%. Although 
AI systems are still unable to achieve human performance on more complex linguistic tasks 
such as abductive natural language inference (aNLI), the difference is narrowing. Humans 
performed 9 percentage points better on aNLI in 2019. As of 2021, that gap has shrunk to 1.

•  Turn toward more general reinforcement learning: For the last decade, AI systems have 
been able to master narrow reinforcement learning tasks in which they are asked to maximize 
performance in a specific skill, such as chess. The top chess software engine now exceeds 
Magnus Carlsen’s top ELO score by 24%. However, in the last two years AI systems have also 
improved by 129% on more general reinforcement learning tasks (Procgen) in which they 
must operate in novel environments. This trend speaks to the future development of AI systems 
that can learn to think more broadly. 

•  AI becomes more affordable and higher performing: Since 2018, the cost to train an image 
classification system has decreased by 63.6%, while training times have improved by 94.4%.  
The trend of lower training cost but faster training time appears across other MLPerf task 
categories such as recommendation, object detection and language processing, and favors the 
more widespread commercial adoption of AI technologies. 

•  Robotic arms are becoming cheaper: An AI Index survey shows that the median price of 
robotic arms has decreased by 46.2% in the past five years—from $42,000 per arm in 2017  
to $22,600 in 2021. Robotics research has become more accessible and affordable. 

CHAPTER 2: TECHNICAL PERFORMANCE
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IMAGE CLASSIFICATION 
  Image classification refers to the ability of machines to 
categorize what they see in images (Figure 2.1.1). In a 
practical sense, image recognition systems can help cars 
identify objects in their surroundings, doctors detect 
tumors, and factory managers spot production defects. 
The past decade has seen tremendous advances in the 
technical capacity of image recognition systems, especially 
as researchers have embraced more machine learning 
techniques. Moreover, progress in algorithmic, hardware, 
and data technologies has meant that image recognition 
has become more affordable, widely applicable, and 
accessible than ever before.

ImageNet
ImageNet is a database that includes over 14 million images 
across 20,000 categories publicly available to researchers 
working on image classification problems. Created in 2009, 
ImageNet is now one of the most common ways scientists 
benchmark improvement on image classification.

ImageNet: Top-1 Accuracy
Benchmarking on ImageNet is measured through accuracy 
metrics, which quantify how frequently AI systems assign 
the right labels to the given images. Top-1 accuracy 
measures the rate at which the top prediction made by 
a classification model for a given image matches the 
image’s actual target label. In recent years, it has become 
increasingly common to improve the performance of 
systems on ImageNet by pretraining them with additional 
data from other image datasets.

As of late 2021, the top image classification system makes 
on average 1 error for every 10 classification attempts 
on Top-1 accuracy compared to an average of 4 errors 
for every 10 attempts in late 2012 (Figure 2.1.2). In 2021, 

2.1 COMPUTER VISION—IMAGE

the top pretrained system was CoAtNets, produced by 
researchers on the Google Brain Team. 

ImageNet: Top-5 Accuracy
Top-5 accuracy considers whether any of the model’s 5 
highest probability answers align with the image label. As 
highlighted in Figure 2.1.3, AI systems presently achieve 
near perfect Top-5 estimation. Currently, the state-of-the-
art performance on Top-5 accuracy with pretraining is 
99.0%, achieved in November 2021 by Microsoft Cloud and 
Microsoft AI’s Florence-CoSwim-H model. 

Improvements in Top-5 accuracy on ImageNet seem to be 
plateauing, which is perhaps unsurprising. If your system 
is classifying correctly 98 or 99 out of 100 times, there is 
only so much higher you can go.

Figure 2.1.1

Artificial Intelligence
Index Report 2022

Computer vision is the subfield of AI that teaches machines to understand images and videos. There is a wide range of computer 
vision tasks, such as image classification, object recognition, semantic segmentation, and face detection. As of 2021, computers can 
outperform humans on a plethora of computer vision tasks. Computer vision technologies have a variety of important real-world 
applications, such as autonomous driving, crowd surveillance, sports analytics, and video-game creation. 

2.1 Computer Vision–Image
CHAPTER 2: TECHNICAL PERFORMANCE

A DEMONSTRATION OF IMAGE CLASSIFICATION
Source: Krizhevsky, 2020

https://www.cs.toronto.edu/~kriz/cifar.html


53Chapter 2 PreviewTable of Contents

Artificial Intelligence
Index Report 2022

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

60%

70%

80%

90%

To
p-

1 
A

cc
ur

ac
y 

(%
)

87.80%, Without Extra Training Data

90.88%, With Extra Training Data

IMAGENET CHALLENGE: TOP-1 ACCURACY
Source: Papers with Code, 2021; arXiv, 2021 | Chart: 2022 AI Index Report

Figure 2.1.2

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

80%

85%

90%

95%

100%

To
p-

5 
A

cc
ur

ac
y 

(%
)

97.90%, Without Extra Training Data

99.02%, With Extra Training Data

      94.90 %, Human Baseline

IMAGENET CHALLENGE: TOP-5 ACCURACY
Source: Papers with Code, 2021; arXiv, 2021 | Chart: 2022 AI Index Report

Figure 2.1.3

2.1 Computer Vision–Image
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Figure 2.1.5

IMAGE GENERATION 
Image generation is the task of generating images that are 
indistinguishable from real ones. Image generation can be 
widely useful in generative domains where visual content 
has to be created, for example entertainment (companies 
like NVIDIA have already used image generators to create 
virtual worlds for gaming), fashion (designers can let AI 

STL-10: Fréchet Inception Distance (FID) Score
The Fréchet Inception Distance score tracks the similarity 
between an artificially generated set of images and the 
real images from which it was generated. A low score 
means that the generated images are more similar to 
the real ones, and a score of zero indicates that the fake 
images are identical to the real ones. 

systems generate different design patterns), and healthcare 
(image generators can synthetically create novel drug 
compounds). Figure 2.1.4 illustrates progress made in 
image generation by presenting several human faces that 
were synthetically generated by AI systems in the last year.

Figure 2.1.5 documents the gains generative models have 
made in FID on the STL-10 dataset, one of the most widely 
cited datasets in computer vision. The state-of-the-art 
model on STL-10 developed by researchers at the Korea 
Advanced Institute of Science and Technology as well as the 
University of Seoul posted a FID score of 7.7, significantly 
better than the state-of-the-art result from 2020. 

Figure 2.1.42021

2.1 Computer Vision–Image
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GAN PROGRESS ON FACE GENERATION
Source: Goodfellow et al., 2014; Radford et al., 2016; Liu & Tuzel, 2016; 
Karras et al., 2018; Karras et al., 2019; Goodfellow, 2019; Karras et al., 
2020; AI Index, 2021; Vahdat et al., 2021
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Figure 2.1.6

CIFAR-10: Fréchet Inception Distance (FID) Score
Progress on image generation can also be benchmarked 
on CIFAR-10, a dataset of 60,000 color images across 10 
different object classes. The state-of-the-art results on 
CIFAR-10 posted in 2021 were achieved by researchers 
from NVIDIA.

The FID scores achieved by the top image generation 
models are much lower on CIFAR-10 than STL-10. This 
difference is likely attributable to the fact that CIFAR-10 
contains images of much lower resolution (32 x 32 pixels) 
than those on STL-10 (96 x 96 pixels).

2.1 Computer Vision–Image
CHAPTER 2: TECHNICAL PERFORMANCE
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Figure 2.1.7

DEEPFAKE DE TECTION 
Many AI systems can now generate fake images that are 
indistinguishable from real ones. A related technology 
involves superimposing one person’s face onto another, 
creating a so-called “deepfake.” Deepfakes are used 
for purposes ranging from advertising to generating 
misogynistic pornography and disinformation (in 2018, 
for example, a deepfake video of Barack Obama uttering 
profanities about Donald Trump was circulated online over 
2 million times). In the last few years, AI researchers have 
sought to keep up with improving deepfake technologies by 
crafting stronger deepfake detection algorithms.

FaceForensics++
FaceForensics++ is a deepfake detection benchmarking 

dataset that contains approximately 1,000 original video 
sequences sourced from YouTube videos. Progress on 
FaceForensics++ is measured in terms of accuracy: the 
percentage of altered images an algorithm can correctly 
identify.

Although FaceForensics++ was introduced in 2019, 
researchers have tested previously existing deepfake 
detection methods on the dataset in order to track 
progress over time in deepfake detection (Figure 2.1.7). 
In the last decade, AI systems have become better and 
better at detecting deepfakes. In 2012, the top-performing 
systems could correctly identify 69.9% of deepfakes 
across all four FaceForenics++ datasets. In 2021, that 
number increased to 97.7%.1

1 These numbers were taken by averaging performance across all four FaceForensics++ datasets.

2.1 Computer Vision–Image
CHAPTER 2: TECHNICAL PERFORMANCE
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Figure 2.1.8

Celeb-DF
The Celeb-DF deepfake detection dataset is composed of 
590 original celebrity YouTube videos manipulated into 
5,639 deepfakes. Celeb-DF was introduced in 2019. In 
2021, the top score on Celeb-DF was 76.9 and came from 
researchers at the University of Science and Technology of 
China and Alibaba group (Figure 2.1.8).

Top detection models perform significantly worse (by 20 
percentage points) on Celeb-DF than FaceForensics++, 
suggesting that Celeb-DF is a more challenging dataset to 
test out techniques on. As deepfake technologies continue 
to improve in the upcoming years, it will be important 
to continue monitoring progress on Celeb-DF and other 
similarly challenging deepfake detection datasets. 

HUMAN POSE ESTIMATION 
Human pose estimation is the task of estimating different 
positions of human body joints (arms, head, torso, etc.) 
from a single image (Figure 2.1.9), and then combining these 
estimates to correctly label the pose the human is taking. 

Human pose estimation can be used to facilitate activity 
recognition for purposes such as sports analytics, crowd 
surveillance, CGI development, virtual environment design, 
and transportation (for example, identifying the body 
language signs of an airport runway controller). 

2.1 Computer Vision–Image
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Figure 2.1.9

A DEMONSTRATION OF 
HUMAN POSE ESTIMATION
Source: Cao et al., 2019

https://arxiv.org/abs/1812.08008
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Leeds Sports Poses: Percentage of Correct 
Keypoints (PCK)
The Leeds Sports Poses dataset contains 2,000 images 
collected from Flickr of athletes playing a sport. Each 
image includes information on 14 different body joint 
locations. Performance on the Leeds Sports Poses 
benchmark is assessed by the percentage of correctly 
estimated keypoints.

In 2021, the top-performing human pose estimation 
model correctly identified 99.5% of keypoints on Leeds 
Sports Poses (Figure 2.1.10). Given that maximum 
performance on Leeds Sports is 100.0%, more challenging 
benchmarks for human pose estimation will have to be 
developed, as we are close to saturating the benchmark. 

2.1 Computer Vision–Image
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Human3.6M: Average Mean Per Joint Position 
Error (MPJPE)
3D human pose estimation is a more challenging type of 
pose estimation, where AI systems are asked to estimate 
poses in a three- rather than two-dimensional space. The 
Human3.6M dataset tracks progress in 3D human pose 
estimation. Human3.6M is a collection of over 3.6 million 
images of 17 different types of human poses (talking on 
the phone, discussing, and smoking, etc.). Performance 

on Human3.6M is measured in average mean per joint 
position error in millimeters, which is the average difference 
between an AI model’s position estimations and the actual 
position annotation. 

In 2014, the top-performing model was making an average 
per joint error of 16 centimeters, half the size of a standard 
school ruler. In 2021, this number fell to 1.9 centimeters, 
less than the size of an average paper clip. 

2.1 Computer Vision–Image
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SEMANTIC SEGMENTATION 
Semantic segmentation is the task of assigning 
individual image pixels a category (such as person, 
bicycle, or background) (Figure 2.1.12). A plethora 
of real world domains require pixel-level image 
segmentation such as autonomous driving (identifying 
which parts of the image a car sees are pedestrians and 
which parts are roads), image analysis (distinguishing 
the foreground and background in photos), and 
medical diagnosis (segmenting tumors in lungs). 

2.1 Computer Vision–Image
CHAPTER 2: TECHNICAL PERFORMANCE

A DEMONSTRATION OF SEMANTIC SEGMENTATION
Source: Visual Object Classes Challenge, 2012

Cityscapes
The Cityscapes dataset contains images of urban street 
environments from 50 cities, taken during the daytime in 
different seasons, and it allows for evaluation on a wide 
range of semantic segmentation tasks (instance-level, 
panoptic, and 3D vehicle). 

The task to which most researchers submit is pixel-level 
semantic labeling, a challenge in which AI systems must 
semantically label an image on a per-pixel level. Challengers 
are evaluated on the intersection-over-union (IoU) 

metric, with a higher IoU score corresponding to better 
segmentation accuracy. In practical terms, a higher score 
means that a greater proportion of the image segments 
predicted by the model overlap with the image’s actual 
segments.

The top-performing AI systems on Cityscapes in 2021 
reported scores that are 14.6 percentage points higher than 
those in 2015. As with other computer vision tasks, the top 
performing models on Cityscapes have been pretrained on 
additional training data in the last few years.
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Figure 2.1.13

Figure 2.1.12

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit
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MEDICAL IMAGE SEGMENTATION 
Medical image segmentation refers to the ability of AI 
systems to segment objects of interest, such as organs, 
lesions, or tumors, in medical images (Figure 2.1.14). 
Technical progress in this task is vital to streamlining 
medical diagnoses. Advances in medical image 
segmentation mean doctors can spend less time on 
diagnosis and more time treating patients.

2.1 Computer Vision–Image
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Figure 2.1.14

A DEMONSTRATION OF KIDNEY SEGMENTATION
Source: Kidney and Kidney Tumor Segmentation, 2021

CVC-ClinicDB and Kvasir-SEG
CVC-ClinicDB is a dataset that includes over 600 high-
resolution images from 31 colonoscopies. Kvasir-SEG is a 
public dataset of 1,000 high-resolution gastrointestinal polyp 
images that were manually segmented by doctors and cross-
verified by professional gastroenterologists. Both datasets 
are used to track progress in medical image segmentation. 
Performance is measured in mean DICE, which represents the 
average overlap between the polyp segments identified by an 
AI system and the actual polyp segments.

AI systems are now capable of correctly segmenting 
colonoscopy polyps at a rate of 94.2% on CVC-ClinicDB, 
representing an 11.9 percentage point improvement 
since 2015, and a 1.8 percentage improvement since 

2020 (Figure 2.1.15). Similar progress has been made on 
Kvasir-SEG, where presently the top-performing AI model 
can accurately segment gastrointestinal polyps at a rate 
of 92.2%. The top results on both the CVC-ClinicDB and 
Kvasir-SEG benchmarks were achieved by the MSRF-Net 
model, one of the first convolutional neural networks 
designed specifically for medical image segmentation.
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Figure 2.1.15a Figure 2.1.15b

https://kits21.kits-challenge.org/
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The Kvasir-SEG benchmark also points to the explosion of 
interest in medical image segmentation. Prior to 2020, the 
dataset was referenced in only three academic papers. In 
2020 that number rose to six, and in 2021 it shot up to 25. 
Last year also saw the hosting of KiTS21 (the Kidney and 
Kidney Tumor Segmentation Challenge), which challenged 
medical researchers from academia and industry to create 
the best systems for automatically segmenting renal 
tumors and the surrounding anatomy of kidneys. 

FACE DETECTION AND RECOGNITION
In facial detection, AI systems are tasked with identifying 
individuals in images or videos. Although facial recognition 
technology has existed for several decades, the technical 
progress in the last few years has been significant. Some of 
today’s top-performing facial recognition algorithms have a 
near 100% success rate on challenging datasets.

Facial recognition can be used in transportation to facilitate 
cross-border travel, in fraud prevention to protect sensitive 
documents, and in online proctoring to identify illicit 
examination behavior. The greatest practical promise of 
facial recognition, however, is in its potential to aid security, 

which makes the technology extremely appealing to 
militaries and governments all over the world (e.g., 18 out 
of 24 U.S. government agencies are already using some 
kind of facial recognition technology).

National Institute of Standards and Technology 
(NIST) Face Recognition Vendor Test (FRVT)
The National Institute of Standards and Technology’s 
Face Recognition Vendor Test measures how well facial 
recognition algorithms perform on a variety of homeland 
security and law enforcement tasks, such as face 
recognition across photojournalism images, identification 
of child trafficking victims, deduplication of passports, 
and cross-verification of visa images. Progress on facial 
recognition algorithms is measured according to the false 
non-match rate (FNMR) or the error rate (the frequency 
with which a model fails to match an image to a person).

In 2017, some of the top-performing facial recognition 
algorithms had error rates of over 50.0% on certain FRVT 
tests. As of 2021, none has posted an error rate greater than 
3.0%. The top-performing model across all datasets in 2021 
(visa photos) registered an error rate of 0.1%, meaning that 
for every 1,000 faces, the model correctly identified 999. 
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FACE DETECTION:  
EFFECTS OF MASK-WEARING

Face Recognition Vendor Test (FRVT):  
Face-Mask Effects
Facial recognition has become a more challenging 
task with the onset of the COVID-19 pandemic and 
accompanying mask mandates. The face-mask effects test 
asks AI models to identify faces on two datasets of visa 
border photos, one of which includes masked faces, the 
other which does not.

Three important trends can be gleaned from the FRVT 
face-mask test: (1) Facial recognition systems still perform 
relatively well on masked faces; (2) the performance on 
masked faces is worse than on non-masked faces; and (3) 
the gap in performance has narrowed since 2019.
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Although facial recognition 
technology has existed 
for several decades, the 
technical progress in the 
last few years has been 
significant. Some of today’s 
top-performing facial 
recognition algorithms have 
a near 100% success rate on 
challenging datasets.
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Masked Labeled Faces in the Wild (MLFW)
In 2021, researchers from the 
Beijing University of Posts and 
Telecommunications released a 
facial recognition dataset of 6,000 
masked faces in response to the new 
recognition challenges posed by 
large-scale mask-wearing.

As part of the dataset release, the researchers ran a series of existing state-of-the-art detection 
algorithms on a variety of facial recognition datasets, including theirs, to determine how much detection 
performance decreased when faces were masked. Their estimates suggest that top methods perform 5 
to 16 percentage points worse on masked faces compared to unmasked ones. These findings somewhat 
confirm the insights from the FRVT face-mask tests: Performance deteriorates when masks are included, 
but not by an overly significant degree. 
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Figure 2.1.18
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EXAMPLES OF MASKED FACES IN 
THE MASKED LABELED FACES IN 

THE WILD (MLFW) DATABASE
Source: Wang et al., 2021

https://arxiv.org/abs/2109.05804
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VISUAL REASONING
Visual reasoning assesses how well 
AI systems can reason across a 
combination of visual and textual 
data. Visual reasoning skills are 
essential in developing AI that can 
reason more broadly. Existing AI can 
already execute certain narrow visual 
tasks better than humans, such as 
classifying images, detecting faces, 
and segmenting objects. But many AI 
systems struggle when challenged to 
reason more abstractly—for example, 
generating valid inferences about the 
actions or motivations of agents in an 
image (Figure 2.1.20). 
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Figure 2.1.20

Figure 2.1.21

AN EXAMPLE OF A VISUAL REASONING TASK
Source: Goyal et al., 2021

SAMPLE QUESTIONS IN THE VISUAL QUESTION 
ANSWERING (VQA) CHALLENGE
Source: Goyal et al., 2017

Visual Question Answering 
(VQA) Challenge
In the Visual Question Answering 
challenge, AI systems are tasked with 
answering open-ended questions 
about images (Figure 2.1.21). To 
answer the questions at a high level, 
AI systems must have a combined 
understanding of language, vision, 
and commonsense reasoning.

https://visualqa.org/challenge.html
https://arxiv.org/abs/1612.00837
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In the six years since the VQA challenge began, there has 
been a 24.4 absolute percentage point improvement in 
state-of-the-art performance. In 2015, the top-performing 

systems could correctly answer only 55.4% of questions 
(Figure 2.1.22). As of 2021, top performance stood at 
79.8%—close to the human baseline of 80.8%.
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Figure 2.1.22
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ACTIVIT Y RECOGNITION 
  A fundamental subtask in video computer vision is 
activity recognition: identifying the activities that occur 
in videos. AI systems have been challenged to classify 
activities that range from simple actions, like walking, 
waving, or standing, to ones that are more complex and 
contain multiple steps, like preparing a salad (which 
requires an AI system to recognize and chain together 
discrete actions like cutting tomatoes, washing the 
greens, applying dressing, etc.)

2.2 COMPUTER VISION—VIDEO
Kinetics-400, Kinetics-600, Kinetics-700
Kinetics-400, Kinetics-600, and Kinetics-700 are a series of 
datasets for benchmarking video activity recognition. Each 
dataset includes 650,000 large-scale, high-quality video 
clips from YouTube that display a wide range of human 
activities, and asks AI systems to classify an action from a 
possible set of 400, 600, and 700 categories, respectively. 
Some of the new and more challenging activity classes 
added to the Kinetics-700 series include pouring wine, 
playing the oboe, and making latte art. 

Figure 2.2.1

Video analysis concerns reasoning or task operation across sequential frames (videos), rather than single frames (images). Video 
computer vision has a wide range of use cases, which include assisting criminal surveillance efforts, sports analytics, autonomous 
driving, navigation of robots, and crowd monitoring. 

2.2 Computer Vision—Video
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EXAMPLE CLASSES FROM THE KINETICS DATASET
Source: Kay et al., 2017

https://arxiv.org/abs/1705.06950v1
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As of 2022, one model tops all three Kinetics datasets. 
MTV, a collaboration between Google Research, Michigan 
State University, and Brown University, released in January 
2022, achieved a 89.6% Top-1 accuracy on the 600 series, 
89.1% accuracy on the 400 series, and 82.20% accuracy 
on the 700 series (Figure 2.2.2). The most striking aspect 
about technical progress on Kinetics is how rapidly the gap 

has narrowed between performance on the datasets. In 
2020, the gap between performance on Kinetics-400 and 
Kinetics-700 was 27.14 percentage points. In one short 
year, that gap has narrowed to 7.4 points, which means 
that performance on the newer, harder dataset is occurring 
more rapidly than performance on the easier dataset and 
suggests that the easier ones are starting to asymptote. 
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ActivityNet: Temporal Action Localization Task
ActivityNet is a video dataset for human activity 
understanding that contains 700 hours of videos of 
humans doing 200 different activities (long jump, dog 
walking, vacuuming, etc.). For an AI system to successfully 
complete the ActivityNet Temporal Action Localization 
Task (TALT) task, it has to execute two separate steps: (1) 
localization (identify the precise interval during which the 
activity occurs); and (2) recognition (assign the correct 
category label). Temporal action localization is one of 

the most complex and difficult tasks in computer vision. 
Performance on TALT is measured in terms of mean average 
precision, with a higher score indicating greater accuracy. 

As of 2021 the top-performing model on TALT, developed 
by HUST-Alibaba, scores 44.7%, a 26.9 percentage point 
improvement over the top scores posted in 2016 when the 
challenge began (Figure 2.2.3). Although state-of-the-art 
results on the task have been posted for each subsequent 
year, the gains have become increasingly small. 
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OB JECT DE TECTION
Object detection is the task of identifying objects within 
an image (Figure 2.2.4). There are different philosophies 
bearing on priority, speed, and accuracy that guide the 
design of object detection systems. Systems that train 
quickly might be more efficient but are less accurate. 
Those that are more accurate might perform better but 

take longer to process a video. This tradeoff between 
speed and accuracy is also reflected in the types of object 
detection methods pioneered in the last decade. There 
are one-stage methods which prioritize speed, such as 
SSD, RetinaNet, and YOLO, and two-stage methods which 
prioritize accuracy, such as Mask R-CNN, Faster R-CNN, 
and Cascade R-CNN.

2.2 Computer Vision—Video
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Figure 2.2.4

A DEMONSTRATION OF HOW OBJECT DETECTION APPEARS TO AI SYSTEMS
Source: COCO, 2020

https://cocodataset.org/#detection-2020
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Common Object in Context (COCO)
Microsoft’s Common Object in Context (COCO) object 
detection dataset contains over 328,000 images across more 
than 80 object categories. There are many accuracy metrics 
used to track performance on object detection, but for the 
sake of consistency, this section and the majority of this 
report considers mean average precision (mAP50).

Since 2016, there has been a 23.8 percentage point 
improvement on COCO object detection, with this year’s 
top model, GLIP, registering a mean average precision of 
79.5%.2  Figure 2.2.5 illustrates how the use of extra training 
data has taken over object detection, much as it has with 
other domains of computer vision. 

2.2 Computer Vision—Video
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Figure 2.2.5

2 GLIP (Grounded Language-Image Pretraining), a model designed to master the learning of language contextual visual representations, was a collaboration of researchers from UCLA, Microsoft Re-
search, University of Washington, University of Wisconsin–Madison, Microsoft Cloud, Microsoft AI, and International Digital Economy Academy.
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You Only Look Once (YOLO)
You Only Look Once is an open-source object detection 
model that emphasizes speed (inference latency) over 
absolute accuracy. 

Over the years, there have been different iterations of YOLO, 
and Figure 2.2.6 plots the performance of YOLO object 
detectors versus the absolute top performing detectors 

on the COCO dataset. YOLO detectors have become 
much better in terms of performance since 2017 (by 28.4 
percentage points). Second, the gap in performance 
between YOLO and the best-performing object detectors 
has narrowed. In 2017 the gap stood at 11.7%, and it 
decreased to 7.1% in 2021. In the last five years, object 
detectors have been built that are both faster and better. 

2.2 Computer Vision—Video
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Figure 2.2.8

Visual Commonsense Reasoning (VCR)
The Visual Commonsense Reasoning challenge is a 
relatively new benchmark for visual understanding. VCR 
asks AI systems to answer challenging questions about 
scenarios presented from images, and also to provide the 
reasoning behind their answers (unlike the VQA challenge, 

Performance on VCR is measured in the Q->AR score, which 
aggregates how well machines can choose the right answer 
for a given multiple-choice question (Q->A) and then select 
the correct rationale for the answer (Q->R).

Since the challenge debuted, AI systems have become 
better at visual commonsense reasoning, although they still 

which only requires an answer). The dataset contains 
290,000 pairs of multiple-choice questions, answers, 
and rationales from 110,000 image scenarios taken from 
movies. Figure 2.2.7 illustrates the kinds of questions 
posed in the VCR. 

lag far behind human levels of performance (Figure 2.2.8). 
At the end of 2021, the best mark on VCR stood at 72.0, a 
score that represents a 63.6% increase in performance since 
2018. Although progress has been made since the challenge 
was launched, improvements have become increasingly 
marginal, suggesting that new techniques may need to be 
invented to significantly improve performance.

2.2 Computer Vision—Video
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Figure 2.2.7

A SAMPLE QUESTION OF THE VISUAL COMMONSENSE REASONING (VCR) CHALLENGE
Source: Zellers et al., 2018

https://arxiv.org/abs/1811.10830
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ENGLISH LANGUAGE 
UNDERSTANDING  
English language understanding challenges AI systems 
to understand the English language in various contexts, 
such as sentence understanding, yes/no reading 
comprehension, reading comprehension with logical 
reasoning, etc. 

SuperGLUE
SuperGLUE is a single-number metric that tracks technical 
progress on a diverse set of linguistic tasks (Figure 2.3.1). 

2.3 LANGUAGE
As part of the benchmark, AI systems are tested on eight 
different tasks (such as answering yes/no questions, 
identifying causality in events, and doing commonsense 
reading comprehension), and their performance on these 
tasks is then averaged into a single score. SuperGLUE is 
the successor to GLUE, an earlier benchmark that also 
tests on multiple tasks. SuperGLUE was released in May 
2019 after AI systems began to saturate the GLUE metric, 
creating demand for a harder benchmark.

Figure 2.3.1

Natural language processing (NLP) is a subfield of AI, with roots that stretch back as far as the 1950s. NLP involves research into systems that 
can read, generate, and reason about natural language. NLP evolved from a set of systems that in its early years used handwritten rules and 
statistical methodologies to one that now combines computational linguistics, rule-based modeling, statistical learning, and deep learning. 

This section looks at progress in NLP across several language task domains, including: (1) English language understanding; (2) text 
summarization; (3) natural language inference; (4) sentiment analysis; and (5) machine translation. In the last decade, technical progress in 
NLP has been significant: The adoption of deep neural network–style machine learning methods has meant that many AI systems can now 
execute complex language tasks better than many human baselines.

2.3 Language
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A SET OF SUPERGLUE TASKS3

Source: Wang et al., 2019

3  For the sake of brevity, this figure only displays 3 of the 8 tasks.

https://arxiv.org/abs/1905.00537
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Figure 2.3.2

At the top of the SuperGLUE leaderboard sits the SS-MoE 
model with a state-of-the-art score of 91.0 (Figure 2.3.2), 
which exceeds the human performance score of 89.8 
given by the SuperGLUE benchmark developers. The fact 

Stanford Question Answering Dataset (SQuAD)
The Stanford Question Answering Dataset (SQuAD) 
benchmarks performance on reading comprehension. 
The dataset includes 107,785 question-and-answer pairs 
taken from 536 Wikipedia articles. Performance on SQuAD 
is measured by the F1 score, which is the average overlap 
between the AI system’s answers and the actual correct 
answers: The higher the score, the better the performance.

As was the case with GLUE, AI systems improved so rapidly 
on SQuAD that only two years after launching SQuAD in 
2016, researchers released SQuAD 2.0. This second version 
included more challenging reading comprehension tasks, 
namely a set of 50,000 unanswerable questions that were 
written in a way to appear answerable (Figure 2.3.3). 

that progress on SuperGLUE was achieved so rapidly 
suggests that researchers will need to develop more 
complex suites of natural language tasks to challenge 
the next generation of AI systems.

2.3 Language
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Figure 2.3.3

HARDER QUESTIONS ADDED TO STANFORD 
QUESTION ANSWERING DATASET (SQUAD) 2.0
Source: Rajpurkar et al., 2018

https://arxiv.org/abs/1806.03822
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Figure 2.3.4

At the end of 2021, the leading scores on SQuAD 1.1 and 
SQuAD 2.0 stood at 95.7 and 93.2, respectively (Figure 
2.3.4). Although these scores are state of the art, they 
are marginal improvements over the previous year’s top 

Reading Comprehension 
Dataset Requiring Logical 
Reasoning (ReClor)
The plateauing progress on 
benchmarks like SQuAD suggests that 
NLP models need to be tested on more 
complex linguistic challenges like those 
offered by ReClor. Created in 2020 by 
computer scientists from the National 
University of Singapore, ReClor requires 
that AI systems engage in reading 
comprehension that also necessitates 
logical reasoning. The ReClor dataset is 
made up of logical reasoning questions 
from the LSAT, the entrance exam for 
law schools in the United States and 
Canada (Figure 2.3.5).

scores (0.4% and 0.2%). Both SQuAD datasets have seen 
a trend whereby immediately after the initial launches, 
human-performance-exceeding scores were realized and 
then followed by small, plateau-like increases.

2.3 Language
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Figure 2.3.5

A SAMPLE QUESTION IN READING COMPREHENSION DATASET 
REQUIRING LOGICAL REASONING (RECLOR)
Source: Yu et al., 2020

https://arxiv.org/abs/2002.04326


77Chapter 2 PreviewTable of Contents

Artificial Intelligence
Index Report 2022

2020 2021

50%

60%

70%

80%

90%

A
cc

ur
ac

y 
(%

)

69.29%, Test Hard

91.82%, Test Easy

READING COMPREHENSION DATASET REQUIRING LOGICAL REASONING (RECLOR): ACCURACY
Source: ReClor Leaderboard, 2021 | Chart: 2022 AI Index Report

Figure 2.3.6

There are two sets of questions on ReClor, easy and 
hard, with AI systems being judged on accuracy based 
on the percentage of questions they answer correctly 
(Figure 2.3.6). Although AI systems are presently capable 
of achieving a relatively high level of performance on 
the easy set of questions, they struggle on the hard set. 
In 2021, the top-performing model on ReClor (hard set) 
scored 69.3%, roughly 22.5 percentage points lower 
than the top-performing model on the easy set. Datasets 
like ReClor suggest that while NLP models can execute 
straightforward reading comprehension tasks, they face 
more difficulty when those tasks are coupled with logical 
reasoning requirements.

2.3 Language
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Although AI systems 
are presently capable of 
achieving a relatively high 
level of performance on the 
easy set of questions, they 
struggle on the hard set.
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TEXT SUMMARIZATION
Text summarization is the challenge of synthesizing 
a piece of text while capturing its core content. 
Summarizing texts is an important component of 
text classification, reading comprehension, and 
information dissemination; however, when done 
manually by humans, it is time- and labor-intensive. 
Developing AI systems that can functionally summarize 
texts has a number of practical use cases, from aiding 
universities in classifying academic papers to helping 
lawyers generate case summaries.

Progress in text summarization is often scored on 
ROUGE (Recall-Oriented Understudy for Gisting 
Evaluation). ROUGE calculates the overlap between 

a summary produced by an AI system and the reference 
summary produced by a human. The higher the ROUGE 
score, the greater the overlap and the more accurate the 
summary. 
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Figure 2.3.7

arXiv
ArXiv is a text summarization benchmark dataset that 
contains over 27,770 different papers from arXiv, the 
open-access repository of scientific papers. In the 
five years since benchmarking on arXiv began, AI text 
summarization models have improved their performance 
by 47.1% (Figure 2.3.7). However, as is the case with other 
natural language benchmarks, progress seems to be 
plateauing. 

2.3 Language
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Figure 2.3.8

PubMed
PubMed is a text summarization dataset consisting of 
19,717 scientific publications from the PubMed database of 
scientific papers. Progress on PubMed validates the trend 
seen on arXiv: There has been significant improvement 

on text classification since 2017 (34.6%), but recently the 
pace of that progress has slowed (Figure 2.3.8). In 2021, the 
top-performing model on PubMed was HAT (hierarchical 
attention transformer model), created by researchers at 
Birch AI and the University of Washington.
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NATURAL LANGUAGE INFERENCE
Natural language inference is the task of determining 
whether, given a premise, a hypothesis is true 
(entailment), false (contradiction), or undetermined 
(neutral). This skill is also known as textual 
entailment as it requires determining whether a 
particular premise logically entails a hypothesis. 
Natural language inference necessitates language-
processing skills, such as named entity recognition 
(understanding the words you see), as well as being 
able to use commonsense knowledge to distinguish 
between reasonable and unreasonable inferences.

Stanford Natural Language Inference (SNLI)
The Stanford Natural Language Inference (SNLI) dataset 
contains around 600,000 sentence pairs (premise 
and associated hypothesis) that are labeled as either 
entailment, contradiction, or neutral. As part of this 
challenge, AI systems are asked whether premises 
logically entail certain hypotheses (Figure 2.3.9). 
Performance on SNLI is measured in accuracy based on 
the percentage of questions answered correctly.

2.3 Language
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Figure 2.3.9

QUESTIONS AND LABELS IN STANFORD NATURAL LANGUAGE INFERENCE (SNLI)
Source: Bowman et al., 2015

https://aclanthology.org/D15-1075/
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Figure 2.3.10

The top-performing model on SNLI is Facebook AI USA’s EFL, which in April 2021 posted a score of 93.1% (Figure 2.3.10).

2.3 Language
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Abductive Natural Language Inference (aNLI)
Abductive natural language inference is a more 
difficult type of textual entailment. Abductive inference 
requires drawing the most plausible conclusion from a 
context of limited information and uncertain premises. 
For instance, if Jenny were to return from work and 
find her home in a disheveled state and then recall 
that she left a window open, she can plausibly infer 
that a burglar broke in and caused the mess.4 Although 

abduction is regarded as an essential element in how 
humans communicate with one another, few studies have 
attempted to study the abductive ability of AI systems.

ANLI, a new benchmark for abductive natural language 
inference created in 2019 by the Allen Institute for AI, 
comes with 170,000 premise and hypothesis pairs. Figure 
2.3.11 illustrates the types of statements included in the 
dataset.

Figure 2.3.11

EXAMPLE QUESTIONS IN ABDUCTIVE NATURAL LANGUAGE INFERENCE (ANLI)
Source: Allen Institute for AI, 2021

4 This particular example of abductive commonsense reasoning is taken from Bhagavatula et al. ( 2019), the first paper that investigates the ability of AI systems to perform language-based 
abductive reasoning.

https://leaderboard.allenai.org/anli/submissions/about
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Figure 2.3.12

AI performance on abductive commonsense reasoning has increased by 7.7 percentage points since 2019; however, the 
top AI systems, while close, are unable to achieve human performance levels (Figure 2.3.12). Abductive reasoning is 
therefore still a challenging linguistic task for AI systems.

2.3 Language
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SENTIMENT ANALYSIS
Sentiment analysis is the task of using NLP techniques 
to identify the sentiment (very negative, negative, 
neutral, positive, very positive) of a given text. Sentiment 
analysis can be straightforward if sentences are worded 
clearly and unambiguously, such as “I dislike winter 
weather.” However, sentiment analysis can become 
more challenging when AI systems encounter sentences 
with flipped structures or negations, such as “to say 
that disliking winter weather is not really my thing is 
completely inaccurate.” 

Sentiment analysis has many commercial use cases, from 
parsing customer reviews and field survey responses to 
identifying the emotional states of customers.

SemEval 2014 Task 4 Sub Task 2 
The SemEval 2014 Task 4 Sub Task 2 is a benchmark 
for sentiment analysis that asks machines to engage 
in sentiment analysis. This specific task tests whether 
AI systems can identify the sentiment associated with 
particular aspects of a text, rather than the sentiment of 
entire sentences or paragraphs (Figure 2.3.13). 

Figure 2.3.13

A SAMPLE  
SEMEVAL TASK
Source: Pontiki et al., 2014

https://aclanthology.org/S14-2004.pdf
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Figure 2.3.14

The SemEval dataset is composed of 7,686 restaurant and laptop reviews, whose emotional polarities have been rated 
by humans. On SemEval, AI systems are tasked with assigning the right sentiment labels to particular components of 
the text, with their performance measured in terms of the percentage of the labels they correctly assign.

In the past seven years, AI systems have become much better at sentiment analysis. As of last year, top-performing 
systems estimate sentiment correctly 9 out of 10 times, whereas in 2016, they made correct estimates only 7 out of 
10 times. As of 2021, the state-of-the-art scores on SemEval stood at 88.6%, realized by a team of Chinese researchers 
from South China Normal University and Linklogis Co. Ltd. (Figure 2.3.14).

2.3 Language
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MACHINE TRANSLATION (MT)
Machine translation examines how AI software can 
translate languages. In domains where fluency in 
multiple languages is required, machine translation 
can be extremely impactful. The European Union, for 
example, is required to translate all its cross-national 
policy documents into the 24 languages of its member 
states. Using machine translators can save time, improve 
efficiency, and lead to more consistent outcomes.

Since 2017, neural networks have taken over machine 
translation. Unlike their predecessors, neural translators 
learn from a series of prior translation tasks and predict 
the likelihood of a sequence of words. Neural translation 
models have revolutionized the field of machine translation 
not only because they do not require human supervision, 
but also because they produce the most accurate 
translations. As a result, they have been widely deployed by 
search engines and social networks.
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Figure 2.3.15
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WMT 2014, English-German and English-French 
The WMT 2014 family of datasets, first introduced at the 
Meeting of the Association for Computational Linguistics 
(ACL) 2014, consist of different kinds of translation 
tasks, including translation between English-French and 
English-German language pairs. A machine’s translation 
capabilities are measured by the Bilingual Evaluation 
Understudy, or BLEU, score, which compares the extent 
to which a machine-translated text matches a reference 
human-generated translation. The higher the score, the 
better the translation.

Both the English-French and English-German WMT 2014 
benchmarks showcase the significant progress made 
in AI machine translation over the last decade (Figure 
2.3.15). Since submissions began, there has been a 23.7% 
improvement in English-French and a 68.1% improvement 
in English-German translation ability. Relatively speaking, 
although performance improvements have been more 
significant on the English-German language pair, absolute 
translation ability remains meaningfully higher on English-
French translation. 
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Number of Commercially Available MT Systems
The growing interest in machine translation is also 
reflected in the rise of commercial machine translation 
services such as Google Translate. Since 2017, there 
has been a nearly fivefold increase in the number of 
commercial machine translators on the market, according 

to Intento (Figure 2.3.16). 2021 also saw the introduction of 
three open-source machine translation services (M2M-100, 
mBART, and OPUS). The emergence of publicly available, 
high-functioning machine translation services speaks to 
the increasing accessibility of such services and bodes well 
for anybody who routinely relies on translation.
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SPEECH RECOGNITION  
Speech recognition is the process of training machines 
to recognize spoken words and convert them into text. 
Research in this domain began at Bell Labs in the 1950s, 
when the world was introduced to the automatic digit 
recognition machine (named “Audrey”), which could 
recognize a human saying any number from zero to nine. 
Speech recognition has come a long way since then and in 
the last decade has benefited tremendously from deep-
learning techniques and the availability of rich speech 
recognition datasets. 

Transcribe Speech: LibriSpeech (Test-Clean and 
Other Datasets) 
Introduced in 2015, LibriSpeech is a speech transcription 
database that contains around 1,000 hours of 16 khz 

2.4 SPEECH
English speech taken from a collection of audiobooks. On 
LibriSpeech, AI systems are asked to transcribe speech 
to text and then measured on word error rate, or the 
percentage of words they fail to correctly transcribe.

LibriSpeech is subdivided into two datasets. First, there 
is LibriSpeech Test Clean, which includes higher-quality 
recordings. Performance on Test Clean suggests how 
well AI systems can transcribe speech in ideal conditions. 
Second, there is LibriSpeech Test Other, which includes 
lower-quality recordings. Performance on Test Other is 
indicative of transcription performance in environments 
where sound quality is less than ideal.

AI systems perform incredibly well on LibriSpeech, so 
much so that progress appears to be plateauing (Figure 
2.4.1). A state-of-the-art result on the Test Clean dataset 

Another important domain of AI research is the analysis, recognition, and synthesis of human speech. In this AI subfield, AI systems are 
typically rated on their ability to recognize speech and identify words and convert them into text; and also to recognize speakers and 
identify the individuals speaking. Modern home assistance tools, such as Siri, are one of the many examples of commercially applied AI 
speech technology. 

2.4 Speech
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was not realized in 2021, which speaks to the fact that the 
error rate of the top system was already low at 1.4%. For 
every 100 words that top-performing transcription models 
heard, they correctly transcribed 99.

Performance on the Test Other dataset, while worse than 
Test Clean, was still relatively poor. The state-of-the-art 
results on Test Other were realized by the W2V-BERT 
model, an MIT and Google Brain collaboration, which 
posted an error rate of 2.0%.

VoxCeleb 
VoxCeleb is a large-scale audiovisual dataset of human 
speech for speaker recognition, which is the task of matching 
certain speech with a particular individual. Each year, the 
makers of VoxCeleb host a speaker verification challenge. 
A low score or equal error rate on the VoxCeleb challenge 
is indicative of an AI system that makes few errors in its 
attribution of speech to particular individuals.5 Figure 2.4.2 
plots performance over time on VoxCeleb-1, the original 
VoxCeleb dataset. Since 2017, performance on VoxCeleb has 
improved: Systems that once reported equal error rates of 
7.8% now report errors that are less than 1.0%. 
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Figure 2.4.2
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5  The Equal Error Rate (EER) is not only a measure of the false positive rate, assigning a bad label, but also the false negative rate (failure to assign the correct label). 
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Commercial Recommendation: MovieLens 20M 
The MovieLens 20M dataset contains around 20 
million movie ratings for 27,000 movies from 138,000 
users. The ratings are taken from MovieLens (a movie 
recommendation platform), and AI systems are challenged 
to see if they can predict a user’s movie preferences based 
on their previously submitted ratings. The metric used to 
track performance on MovieLens is Normalized Discounted 
Cumulative Gain (nDCG), which is a measure of ranking 

2.5 RECOMMENDATION
quality. A higher nDCG score means that an AI system 
delivers more accurate recommendations.

Since 2018, top models now perform roughly 5.2% better 
on MovieLens 20M than they did in 2018 (Figure 2.5.1). 
In 2021, the state-of-the-art system on MovieLens 20M 
posted an nDCG of 0.448 and came from researchers at 
the Czech Technical University in Prague.

Recommendation is the task of suggesting items that might be of interest to a user, such as movies to watch, articles to read, or products 
to purchase. Recommendation systems are crucial to businesses, such as Amazon, Netflix, Spotify, and YouTube. For example, one of 
the earliest open recommendation competitions in AI was the Netflix Prize; hosted in 2009, it challenged computer scientists to develop 
algorithms that could accurately predict user ratings for films based on previously submitted ratings. 

2.5 Recommendation
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Click-Through Rate Prediction: Criteo 
Click-through rate prediction is the task of predicting 
the likelihood that something on a website, say an 
advertisement, will be clicked. In 2014, the online 
advertising platform Criteo launched an open click-
through prediction challenge. Included as part of this 
challenge dataset was information on a million ads 
that were displayed during a 24-day period, whether 
they were clicked, and additional information on their 
characteristics. Since the competition launched, the 
Criteo dataset has been widely used to test recommender 
systems. On Criteo, systems are measured on area under 
the curve (AUC). A higher AUC means a better click-
through prediction rate and a stronger recommender 
system.

Performance on Criteo also indicates that recommender 
systems have been slowly and steadily improving in the 
past decade. Last year’s top model (Sina Weibo Corp’s 
MaskNet) performed 1.8% higher on Criteo than the top 
model from 2016. An improvement of 1.8% may seem 
small in absolute terms, but it can be a valuable margin in 
the commercial world. 

A limit of the Criteo and MovieLens benchmarks is that 
they are primarily academic measures of technical 
progress in recommendation (Figure 2.5.2). Most of the 
research work on recommendation occurs in commercial 
settings. Given that companies have an incentive to keep 
their recommendation improvements proprietary, the 
academic metrics included in this section might not be 
complete measures of the technical progress made in 
recommendation.

2.5 Recommendation
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REINFORCEMENT LEARNING 
ENVIRONMENTS 
A reinforcement learning environment is a computer 
platform where AI agents are challenged to maximize 
their performance on a defined task. Unlike other AI tasks 
which require systems to train on a dataset, reinforcement 
learning necessitates that AI systems have an environment 
in which they can test various strategies and, in the process, 
identify the set of strategies that will maximize rewards. 

Arcade Learning Environment: Atari-57
Introduced in 2013, the Arcade Learning Environment 
is an interface that includes various Atari 2600 game 
environments (such as “Pac-Man,” “Space Invaders,” 
and “Frogger”) in which AI agents are challenged to 
optimize performance. To enable standard comparisons, 
researchers typically report average performance on the 
ALE across a suite of 57 games. There are various metrics 
in which performance is measured, but one of the most 
common is mean human-normalized score. A human-
normalized score of 0% represents random performance, 
and a 100% score represents average human performance. 
The mean human-normalized score is then the average 
human-normalized score achieved by an AI system.

In late 2019, DeepMind’s MuZero algorithm achieved 
state-of-the-art performance on Atari-57. MuZero 
not only performed 48.3% better on Atari-57 than 
the previous best-performing model, but it also set a 
new world record on Go and achieved superhuman 
performance on chess and shogi.

2.6 REINFORCEMENT LEARNING

In 2021, however, researchers from Tsinghua University 
and ByteDance launched the GDI-H3 model, which 
surpassed (and nearly doubled) MuZero’s performance 
on Atari-57 (Figure 2.6.1). Moreover, GDI-H3 achieved 
this performance with less training. It only used 200 
million training frames, whereas MuZero used 20 billion: 
GDI-H3 was twice as effective and one hundred times 
more efficient. Creating reinforcement learning models 
that are both high performing and highly efficient is 
an important step in the commercial deployment of 
reinforcement learning.

In reinforcement learning, AI systems are trained to maximize performance on a given task by interactively learning from their prior 
actions. Researchers train systems to optimize by rewarding them if they achieve a desired goal and then punishing them if they fail. 
Systems experiment with different strategy sequences to solve their stated problem (e.g., playing chess or navigating through a maze) 
and select the strategies which maximize their rewards. 

Reinforcement learning makes the news whenever programs like DeepMind’s AlphaZero demonstrate superhuman performance on 
games like Go and Chess. However, reinforcement learning is useful in any commercial domain where computer agents need to maximize 
a target goal or stand to benefit from learning from previous experiences. Reinforcement learning can help autonomous vehicles change 
lanes, robots optimize manufacturing tasks, or time-series models predict future events. 

2.6 Reinforcement Learning
CHAPTER 2: TECHNICAL PERFORMANCE

Creating reinforcement 
learning models that are 
both high performing 
and highly efficient is 
an important step in the 
commercial deployment of 
reinforcement learning.
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Figure 2.6.1

Procgen
Procgen is a new reinforcement learning 
environment introduced by OpenAI in 2019. It 
includes 16 procedurally generated video-game-
like environments specifically designed to test the 
ability of reinforcement learning agents to learn 
generalizable skills (Figure 2.6.2). Procgen was 
developed to overcome some of the criticisms 
leveled at benchmarks like Atari that incentivized 
AI systems to become narrow learners that 
maximized capacity in one particular skill. 
Procgen encourages broad learning by introducing 
a reinforcement learning environment that 
emphasizes high diversity and forces AI systems 
to train in generalizable ways. Performance on 
Procgen is measured in terms of mean-normalized 
score. Researchers typically train their systems on 
200 million training runs and report an average 
score across the 16 Procgen games. The higher the 
system scores, the better the system.

Figure 2.6.2

A SCREENSHOT OF THE 16 GAME ENVIRONMENTS IN PROCGEN
Source: Cobbe et al. 2019

https://arxiv.org/abs/1912.01588v2
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Figure 2.6.3

In November 2021, the MuZero model from DeepMind 
posted a state-of-the-art score of 0.6 on Procgen. 
DeepMind’s results were a 128.6% improvement over 
the baseline performance established in 2019 when 

the environment was first released. Rapid progress on 
such a diverse benchmark signals that AI systems are 
slowly improving their capacity to reason in broader 
environments.
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Figure 2.6.4

Human Games: Chess
Progress in reinforcement learning can also be captured 
by the performance of the world’s top chess software 
engines. A chess engine is a computer program that is 
trained to play chess at a high level by analyzing chess 
positions. The performance of chess engines is ranked 
on Elo, a method for identifying the relative skill levels 
of players in zero-sum games like chess: A higher score 
means a stronger player. 

One caveat is that tracking the performance of 
chess engines is not a complete reflection of general 
reinforcement learning progress; chess engines are 
specifically trained to maximize performance on chess. 
Other popular reinforcement learning systems, like 
DeepMind’s AlphaZero, are capable of playing a broader 

range of games, such as shogi and Go, and have in 
fact beaten some of the top-ranked chess engines. 
Nevertheless, looking at chess engine performance is an 
effective way to relativize the progress made in AI and 
compare it to a widely understandable human baseline.

Computers surpassed human performance in chess 
a long time ago, and since then have not stopped 
improving (Figure 2.6.4). By the mid-1990s, the top chess 
engines exceeded expert-level human performance, and 
by the mid-2000s they surpassed the peak performance 
of Magnus Carlsen, one of the best chess players of all 
time. Magnus Carlsen’s 2882 Elo, recorded in 2014, is 
the highest level of human chess performance ever 
documented. As of 2021, the top chess engine has 
exceeded that level by 24.3%.
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MLPerf: Training Time
MLPerf is an AI training competition run by the ML 
Commons organization. In this challenge, participants 
train systems to execute various AI tasks (image 
classification, image segmentation, natural language 
processing, etc.) using a common architecture. Entrants 
are then ranked on their absolute wall clock time, which is 
how long it takes for the system to train.

Since the MLPerf competitions began in December 2018, 
two key trends have emerged: (1) Training times for 
virtually every AI skill category have massively decreased; 
while (2) AI hardware robustness has substantially 

2.7 HARDWARE
increased. Top-performing hardware systems can reach 
baseline levels of performance in task categories like 
recommendation, light-weight objection detection, image 
classification, and language processing in under a minute.

Figure 2.7.2 more precisely profiles the magnitude of 
improvement across each skill category since MLPerf first 
introduced the category.6 For example, training times 
on image classification increased roughly twenty-seven-
fold, as top times dropped from 6.2 minutes in 2018 to 
0.2 minutes (or 13.8 seconds) in 2021. It might be hard to 
fathom the magnitude of a 27-time decrease in training 
time, but in real terms it is the difference between waiting 
one hour for a bus versus a little more than two minutes.

In evaluating technical progress in AI, it is relevant not only to consider improvements in technical performance but also the speed of 
operation. As this section shows, AI systems continue to improve in virtually every skill category. This performance is often realized by 
increasing parameters and training systems on greater amounts of data. However, all else being equal, models that use more parameters 
and source more data will take longer to train. Longer train times mean slower real-world deployment. Given that the potential of 
increased training times can be offset by stronger and more robust computational infrastructures, it is important to keep track of 
progress in the hardware that powers AI systems.

2.7 Hardware
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Figure 2.7.1

6 The solitary point for reinforcement learning on Figure 2.7.1 indicates that a faster time was not registered in the MLPerf competitions in 2020 or 2021. The solitary points for speech recognition and 
image segmentation are indicative of the fact that those AI subtask categories were added to the MLPerf competition in 2021.
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Top-performing hardware systems can reach baseline levels 
of performance in task categories like recommendation, 
light-weight objection detection, image classification, and 
language processing in under a minute.
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Figure 2.7.3

MLPerf: Number of Accelerators
The cross-task improvements in training time are being 
driven by stronger underlying hardware systems, as shown 
in Figure 2.7.3. Since the competition began, the highest 
number of accelerators used—where an accelerator is 
a chip used predominantly for the machine learning 
component of a training run, such as a GPU or a TPU—and 
the mean number of accelerators used by the top system 
increased roughly 7 times while the mean number of 

accelerators used by all entrants increased 3.5 times. 
Most notable, however, is the growing gap between 
the average number of accelerators used by the top-
performing systems and the average accelerators used 
by all systems. This gap was 9 times larger at the end of 
2021 than it had been in 2018. This growth clearly means 
that, on average, building the fastest systems requires 
the most powerful hardware.

2.7 Hardware
CHAPTER 2: TECHNICAL PERFORMANCE
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Figure 2.7.4

IMAGENET: Training Cost
Stronger hardware has not necessarily meant costlier 
training. Figure 2.7.4 plots the lowest training cost per 
year on MLPerf’s image classification subtask (ImageNet). 
In 2021, it cost only $4.6 to train a high-performing image 

classification system. This cost is marginal, especially 
when compared to the $1,112.6 it cost to train a similarly 
performing system in 2017. In simpler terms, in four 
short years, image classification training costs have 
decreased by a factor of 223.

2.7 Hardware
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Price Trends in Robotic Arms7

The survey results show a clear downward trend in the 
pricing of robotic arms in the last seven years. In 2017, 
the median price of a robotic arm was $42,000. Since 
then, the price has declined by 46.2% to reach roughly 

2.8 ROBOTICS
$22,600 in 2021 (Figure 2.8.1). Figure 2.8.2, which plots the 
distribution of robotic arm prices, paints a similar picture: 
Despite some high-priced outliers, there has been a clear 
downward trend since 2017 in the price of robotic arms.

In 2021, the AI Index developed a survey that asked professors who specialize in robotics at top-ranked universities around the world and 
in emerging economies about changes in the pricing of robotic arms as well as the uses of robotic arms in research labs. The survey was 
completed by 101 professors and researchers from over 40 universities and collected data on 117 robotic arm purchase events from 2016 
to 2022. The survey results suggest that there has been a notable decline in the price of robotic arms since 2016.

2.8 Robotics
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Figure 2.8.1

7 We have corrected Figure 2.8.1 and Figure 2.8.2 after noticing a data filtering issue with the survey result. The correct chart has since been updated. View the appendix here for links to the data. In 
addition, note that academic researchers may get a discount when purchasing robotic arms so prices are lower than retail.
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AI Skills Employed by Robotics 
Professors 
In the survey, the AI Index also asked 
robotics professors to what extent 
they employ AI skills in their research. 
Responses revealed that both deep 
learning and reinforcement learning are 
popular AI skills employed by roboticists. 
More specifically, 67.0% of professors 
reported using deep learning and 46.0% 
reported using reinforcement learning.
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Figure 2.8.2
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Figure 2.8.3
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Overview
In recent years, AI systems have started to be deployed into the 

world, and researchers and practitioners are reckoning with their 

real-world harms. Some of these harms include commercial facial 

recognition systems that discriminate based on race, résumé 

screening systems that discriminate on gender, and AI-powered 

clinical health tools that are biased along socioeconomic and racial 

lines. These models have been found to reflect and amplify human 

social biases, discriminate based on protected attributes, and 

generate false information about the world. These findings have 

increased interest within the academic community in studying AI 

ethics, fairness, and bias and prompted industry practitioners to 

direct resources toward remediating these issues, and attracted 

attention from the media, governments, and the people who use and 

are affected by these systems. 

This year, the AI Index highlights metrics which have been adopted 

by the community for reporting progress in eliminating bias and 

promoting fairness. Tracking performance on these metrics alongside 

technical capabilities provides a more comprehensive perspective 

on how fairness and bias change as systems improve, which will be 

important to understand as systems are increasingly deployed.

CHAPTER 3: TECHNICAL AI ETHICS

http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
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https://www.medrxiv.org/content/10.1101/2021.08.10.21261833v1.full
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CHAPTER HIGHLIGHTS

•  Language models are more capable than ever, but also more biased: Large language 
models are setting new records on technical benchmarks, but new data shows that larger 
models are also more capable of reflecting biases from their training data. A 280 billion 
parameter model developed in 2021 shows a 29% increase in elicited toxicity over a 
117 million parameter model considered the state of the art as of 2018. The systems are 
growing significantly more capable over time, though as they increase in capabilities, so does 
the potential severity of their biases.

•  The rise of AI ethics everywhere: Research on fairness and transparency in AI has exploded 
since 2014, with a fivefold increase in related publications at ethics-related conferences. 
Algorithmic fairness and bias has shifted from being primarily an academic pursuit to 
becoming firmly embedded as a mainstream research topic with wide-ranging implications. 
Researchers with industry affiliations contributed 71% more publications year over year  
at ethics-focused conferences in recent years.

•  Multimodal models learn multimodal biases: Rapid progress has been made on training 
multimodal language-vision models which exhibit new levels of capability on joint language-
vision tasks. These models have set new records on tasks like image classification and the 
creation of images from text descriptions, but they also reflect societal stereotypes and 
biases in their outputs—experiments on CLIP showed that images of Black people were 
misclassified as nonhuman at over twice the rate of any other race. While there has been 
significant work to develop metrics for measuring bias within both computer vision and natural 
language processing, this highlights the need for metrics that provide insight into biases in 
models with multiple modalities.

CHAPTER 3: TECHNICAL AI ETHICS



106Chapter 3 PreviewTable of Contents

Algorithmic bias is commonly framed in terms of 
allocative and representation harms. Allocative harm 
occurs when a system unfairly allocates an opportunity 
or resource to a specific group, and representation harm 
happens when a system perpetuates stereotypes and 
power dynamics in a way that reinforces subordination 
of a group. Algorithms are broadly considered fair when 
they make predictions that neither favor nor discriminate 
against individuals or groups based on protected 
attributes which cannot be used for decision-making due 

3.1 META-ANALYSIS OF FAIRNESS AND 
BIAS METRICS

to legal or ethical reasons (e.g., race, gender, religion).

To better understand the landscape of algorithmic bias 
and fairness, the AI Index conducted original research to 
analyze the state of the field. As shown in Figure 3.1.1, 
the number of metrics for measuring bias and fairness 
along ethical dimensions of interest has grown steadily 
since 2018. For this graph, the number of fairness and 
bias metrics published has been cited in at least one 
other work.1

1  2021 data may be lagging as it takes time for metrics to be adopted by the community.

Artificial Intelligence
Index Report 2022

Significant research effort has been invested over the past five years into creating datasets, benchmarks, and metrics designed to 
measure bias and fairness in machine learning models. Bias is often learned from the underlying training data for an AI model; this data 
can reflect systemic biases in society or the biases of the humans who collected and curated the data.

3.1 Meta-Analysis of Fairness and Bias Metrics
CHAPTER 3: TECHNICAL AI ETHICS
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Figure 3.1.1

https://www.youtube.com/watch?v=fMym_BKWQzk
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AI E THICS DIAGNOSTIC ME TRICS 
AND BENCHMARKS 
Measurement of AI systems along an ethical dimension 
often takes one of two forms: 

•  Benchmark datasets: A benchmark dataset contains 
labeled data, and researchers test how well their AI 
system labels the data. Benchmarks do not change over 
time. These are domain-specific (e.g., SuperGLUE and 
StereoSet for language models; ImageNet for computer 
vision) and often aim to measure behavior that is intrinsic 
to the model, as opposed to its downstream performance 
on specific populations (e.g., StereoSet measures model 
propensity to select stereotypes compared to non-
stereotypes, but it does not measure performance gaps 
between different subgroups).

•  Diagnostic metrics: A diagnostic metric measures the 
impact or performance of a model on a downstream 
task—for example, a population subgroup or individual 
compared to similar individuals or the entire population. 
These metrics can help researchers understand how a 
system will perform when deployed in the real world, and 
whether it has a disparate impact on certain populations. 
Examples include group fairness metrics such as 
demographic parity and equality of opportunity.

Benchmarks are useful indicators of progress for the 
field as a whole, and their impact can be measured 
by community adoption (e.g., number of leaderboard 
submissions, or the number of research papers which 
report metrics). They also often enable rapid algorithmic 
progress as research labs compete on leaderboard 
metrics. However, some leaderboards can be easily 
gamed, and may be based on benchmark datasets that 
contain flaws, such as incorrect labels or poorly defined 
classes. Additionally, their static nature means they are a 
snapshot of a specific cultural and temporal context—in 
other words, a benchmark published in 2017 may not 
correlate to the deployment context of 2022.

Diagnostic metrics enable researchers and practitioners 
to understand the impact of their system on a specific 
application or group and potential concrete harm (e.g., 
“this model is disproportionately underperforming on this 
group with this protected attribute”). Diagnostic metrics 
are most useful at an individual model or application level 
as opposed to functioning as field-level indicators. They 
indicate how a specific AI system performs on a specific 
subgroup or individual, which is helpful for assessing 
real-world impact. However, while these metrics may be 
widely used to test models privately, there is not as much 
information available publicly as these metrics are not 
attached to leaderboards which encourage researchers to 
publish their results.

Figure 3.1.2 shows that there has been a steady amount 
of research investment into developing both benchmarks 
and diagnostic metrics over time.2 3

3.1 Meta-Analysis of Fairness and Bias Metrics
CHAPTER 3: TECHNICAL AI ETHICS

2 Research paper citations are a lagging indicator of activity, and metrics which have been very recently adopted may not be reflected in the current data, similar to 3.1.1.
3 The Perspective API defined seven new metrics for measuring facets of toxicity (toxicity, severe toxicity, identity attack, insult, obscene, sexually explicit, threat), contributing to the unusually high 
number of metrics released in 2017.

Benchmarks are useful 
indicators of progress 
for the field as a whole, 
and their impact can be 
measured by community 
adoption (e.g., number of 
leaderboard submissions, 
or the number of research 
papers which report 
metrics). 

https://twitter.com/sleepinyourhat/status/1152205373253795840
https://twitter.com/sleepinyourhat/status/1152205373253795840
https://www.perspectiveapi.com/
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Figure 3.1.2

2016 2017 2018 2019 2020 2021

Benchmarks
Diagnostic Metrics

The rest of this chapter examines the performance of 
recent AI systems on these metrics and benchmarks in 
depth within domains such as natural language and 
computer vision. The majority of these metrics measure 

intrinsic bias within systems, and it has been shown that 
intrinsic bias metrics may not fully capture the effects of 
extrinsic bias within downstream applications.

3.1 Meta-Analysis of Fairness and Bias Metrics
CHAPTER 3: TECHNICAL AI ETHICS

https://arxiv.org/abs/2012.15859
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Bias metrics can be split into two major categories: intrinsic 
metrics, which measure bias in internal embedding spaces 
of models, and extrinsic metrics, which measure bias in 
the downstream tasks and outputs of the model. Examples 
of extrinsic metrics include group fairness metrics (parity 
across protected groups) and individual fairness metrics 
(parity across similar individuals), which measure whether 
a system has a disproportionately negative impact on a 
subgroup or individual, or gives preferential treatment to 
one group at the expense of another.

TOXICITY: REALTOXICITYPROMPTS 
AND THE PERSPECTIVE API
Measuring toxicity in language models requires labels for 
toxic and nontoxic content. Toxicity is defined as a rude, 

3.2 NATURAL LANGUAGE PROCESSING 
BIAS METRICS

Artificial Intelligence
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Current state-of-the-art natural language processing (NLP) relies on large language models or machine learning systems that process 
millions of lines of text and learn to predict words in a sentence. These models can generate coherent text; classify people, places, and 
events; and be used as components of larger systems, like search engines. Collecting training data for these models often requires scraping 
the internet to create web-scale text datasets. These models learn human biases from their pretraining data and reflect them in their 
downstream outputs, potentially causing harm. Several benchmarks and metrics have been developed to identify bias in natural language 
processing along axes of gender, race, occupation, disability, religion, age, physical appearance, sexual orientation, and ethnicity.

3.2 Natural Language Processing Bias Metrics
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Figure 3.2.1

disrespectful or unreasonable comment that is likely to 
make someone leave a conversation. The Perspective 
API is a tool developed by Jigsaw, a Google company. It 
was originally designed to help platforms identify toxicity 
in online conversations. Developers input text into the 
Perspective API, which returns probabilities that the text 
should be labeled as falling into one of the following 
categories: toxicity, severe toxicity, identity attack, insult, 
obscene, sexually explicit, and threat.

Since the Perspective API was released in 2017, the NLP 
research community has rapidly adopted it for measuring 
toxicity in natural language. As seen in Figure 3.2.1, the 
number of papers using the Perspective API doubled 
between 2020 and 2021, from 8 to 19.

https://support.perspectiveapi.com/s/about-the-api-attributes-and-languages
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RealToxicityPrompts consists of English natural language 
prompts used to measure how often a language model 
completes a prompt with toxic text. Toxicity of a language 
model is measured with two metrics: 

•   Maximum toxicity: the average maximum toxicity score 
across some number of completions

•   Probability of toxicity: how often a completion is 
expected to be toxic

Figure 3.2.2 shows that toxicity in language models 
depends heavily on the underlying training data. Models 
trained on internet text with toxic content filtered out are 
significantly less toxic compared to models trained on 
various corpora of unfiltered internet text. A model trained 
on BookCorpus (a dataset containing books from e-book 
websites) produces toxic text surprisingly often. This 
may be due to its composition—BookCorpus contains a 
significant number of romance novels containing explicit 
content, which may contribute to higher levels of toxicity.

CHAPTER 3: TECHNICAL AI ETHICS

0.00

0.20

0.40

0.60

0.80

To
xi

ci
ty

 S
co

re

0.90

0.78

0.08

0.25

0.85

0.73

0.88

0.75

0.82

0.71

Figure 3.2.2

BookCorpus
openwebtext (C4, toxicity

!ltered)
openwebtext (CTRL,

un!ltered)
openwebtext (GPT-3,

un!ltered)
Wikipedia

Training Data

TOXICITY in LANGUAGE MODELS by TRAINING DATASET
Source: Gehman et al., 2021; Rae et al., 2021; Welbl et al., 2021  | Chart: 2022 AI Index Report

Expected maximum toxicity Toxicity probability

3.2 Natural Language Processing Bias Metrics

https://arxiv.org/abs/2009.11462
https://arxiv.org/pdf/2105.05241.pdf
https://arxiv.org/pdf/2105.05241.pdf
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CHAPTER 3: TECHNICAL AI ETHICS
3.2 Natural Language Processing Bias Metrics

Large Language Models and Toxicity
Recent developments around mitigating toxicity 
in language models have lowered both expected 
maximum toxicity and the probability of toxicity. 
However, detoxification methods consistently lead 
to adverse side effects and somewhat less capable 
models. (For example, filtering training data 
typically comes at the cost of model performance.)

In December 2021, DeepMind released a paper 
describing its 280 billion parameter language 
model, Gopher. Figure 3.2.3a and Figure 3.2.3b 
from the Gopher paper show that larger models 
are more likely to produce toxic outputs when 

prompted with inputs of varying levels of toxicity, 
but that they are also more capable of detecting 
toxicity with regard to their own outputs as well as 
in other contexts, as measured by increased AUC 
(area under the receiver operating characteristic 
curve) with model size. The AUC metric plots the 
true positive rate against the false positive rate 
to characterize how well a model distinguishes 
between classes (higher is better). Larger models 
are dramatically better at identifying toxic 
comments within the CivilComments dataset, as 
shown in Figure 3.2.3b.
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Large Language Models and Toxicity (cont’d)
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DE TOXIFICATION OF MODELS 
CAN NEGATIVELY INFLUENCE 
PERFORMANCE
Detoxification methods aim to mitigate toxicity by 
changing the underlying training data as in domain-
adaptive pretraining (DAPT), or by steering the model 
during generation as in Plug and Play Language Models 
(PPLM) or Generative Discriminator Guided Sequence 
Generation (GeDi).

A study on detoxifying language models shows that 
models detoxified with these strategies all perform worse 
on both white-aligned and African American English on 
perplexity, a metric that measures how well a model has 
learned a specific distribution (lower is better) (Figure 
3.2.4). These models also perform disproportionately 
worse on African American English and text containing 
mentions of minority identities compared to white-
aligned text, a result that is likely due to human biases 
causing annotators to be more apt to mislabel African 
American English as toxic.

CHAPTER 3: TECHNICAL AI ETHICS
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https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://github.com/uber-research/PPLM
https://arxiv.org/abs/2009.06367
https://arxiv.org/abs/2009.06367
https://arxiv.org/abs/2104.06390
https://aclanthology.org/P19-1163/
https://aclanthology.org/P19-1163/
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STEREOSE T
StereoSet is a benchmark measuring stereotype bias along 
the axes of gender, race, religion, and profession, along 
with raw-language modeling ability. One of the associated 
metrics is stereotype score, which measures whether a 
model prefers stereotypes and anti-stereotypes equally. A 
stereotype is an over-generalized belief widely held about 
a group and an anti-stereotype is a generalization about a 
group which contradicts widely accepted stereotypes.

StereoSet has several major flaws in its underlying dataset: 
Some examples fail to express a harmful stereotype, 
conflate stereotypes about countries with stereotypes 
about race and ethnicity, and confuse stereotypes 
between associated but distinct groups. Additionally, 

Figure 3.2.5 shows that StereoSet performance follows 
the same trend seen with toxicity: Larger models reflect 
stereotypes more often unless interventions are taken 
to reduce learned stereotypes during training. The 
prevalence of toxic content online has been estimated 
to be 0.1–3%, which aligns with research showing that 
larger language models are more capable of memorizing 
rare text.

these stereotypes were sourced from crowdworkers 
located in the United States, and the resulting values and 
stereotypes within the dataset may not be universally 
representative.

CHAPTER 3: TECHNICAL AI ETHICS
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https://arxiv.org/abs/2004.09456
https://www.microsoft.com/en-us/research/uploads/prod/2021/06/The_Salmon_paper.pdf
https://arxiv.org/abs/1802.00393
https://www.usenix.org/system/files/sec21-carlini-extracting.pdf
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CROWS-PAIRS
CrowS-Pairs (Crowdsourced Stereotype Pairs) is another 
benchmark measuring stereotype bias. While StereoSet 
compares attributes about a single group, CrowS-Pairs 
contrasts relationships between historically disadvantaged 
and advantaged groups (e.g., Mexicans versus white 
people).

The creators of CrowS-Pairs measured stereotype bias 
using three popular language models: BERT, RoBERTa, 
and ALBERT (Figure 3.2.6). On standard language 
modeling benchmarks, ALBERT outperforms RoBERTa, 
which outperforms BERT.4 However, ALBERT is the most 
biased of the three models according to CrowS-Pairs. 
This mirrors the trend observed with StereoSet and 
RealToxicityPrompts: More capable models are also more 
capable of learning and amplifying stereotypes.

Like earlier examples, BERT, RoBERTa, and ALBERT 
appear to inherit biases from their training data. They 
were all trained on a combination of BookCorpus, English 
Wikipedia, and text scraped from the internet. Analysis 
of BookCorpus reveals that its books about religion are 
heavily skewed toward Christianity and Islam compared 
to other major world religions,5 though it is unclear the 
extent to which these books contain historical content 
versus content written from a specific religious viewpoint.6

We can examine how language models may inherit biases 
about certain religions by looking at their underlying 
datasets. Figure 3.2.7 shows the number of books 
pertaining to different religions in two popular datasets, 
BookCorpus and Smashwords21. Both datasets have 
far more mentions of Christianity and Islam than other 
religions.

CHAPTER 3: TECHNICAL AI ETHICS
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4   Per results on the SQuAD, GLUE, and RACE benchmarks. 
5 Such as Sikhism, Judaism, Hinduism, Buddhism, Atheism.
6 Hate speech classifiers fine-tuned on top of BERT in particular have been shown to frequently misclassify texts containing mentions of “Muslim” as toxic, and researchers find that GPT-3 contains 
significant bias along religious axes for mentions of both “Jewish” and “Muslim.”

https://arxiv.org/abs/2105.05241
https://arxiv.org/abs/2105.05241
https://aclanthology.org/2020.acl-main.483/
https://arxiv.org/abs/2101.05783
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WINOGENDER AND WINOBIAS
Winogender measures gender bias related to occupations. 
Systems are measured on their ability to fill in the correct 
gender in a sentence containing an occupation (e.g., 
“The teenager confided in the therapist because he / she 
seemed trustworthy”). Examples were created by sourcing 
data from the U.S. Bureau of Labor Statistics to identify 
occupations skewed toward one gender (e.g., the cashier 
occupation is made up of 73% women, but drivers are only 
6% women).

Performance on Winogender is measured by the accuracy 
gap between the stereotypical and anti-stereotypical 

CHAPTER 3: TECHNICAL AI ETHICS
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cases, along with the gender parity score (the percentage 
of examples for which the predictions are the same). 
The authors use crowdsourced annotations to estimate 
human performance to be 99.7% accuracy.

Winogender results from the SuperGLUE leaderboard 
show that larger models are more capable of correctly 
resolving gender in the zero-shot and few-shot setting 
(i.e., without fine-tuning on the Winogender task) and less 
likely to magnify occupational gender disparities (Figure 
3.2.8). However, a good score on Winogender does not 
indicate that a model is unbiased with regard to gender, 
only that bias was not captured by this benchmark.

https://arxiv.org/abs/1804.09301
https://github.com/uclanlp/corefBias
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WinoBias is a similar benchmark measuring gender bias 
related to occupations that was released concurrently 
with Winogender by a different research group. As 
shown in Figure 3.2.9, WinoBias is cited more often than 
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Winogender, but the adoption of Winogender within the 
SuperGLUE leaderboard for measuring natural language 
understanding has led to more model evaluations being 
reported on Winogender.

https://arxiv.org/abs/1804.06876
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WINOMT: GENDER BIAS IN 
MACHINE TRANSLATION SYSTEMS
Commercial machine translation systems have been 
documented to reflect and amplify societal biases 
from their underlying datasets. As these systems are 
used broadly in global industries such as e-commerce, 
stereotypes and mistakes in translation can be costly.

WinoMT is a benchmark measuring gender bias in 
machine translation that is created by combining the 
Winogender and WinoBias datasets. Models are evaluated 
by comparing the sentences translated from English to 
another language and extracting the translated gender to 
compare with the original gender. Systems are scored on 
the percentage of translations with correct gender (gender 
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accuracy), the difference in F1 score between masculine 
and feminine examples, and the difference in F1 score 
between examples with stereotypical gender roles and 
anti-stereotypical gender roles.

As seen in Figure 3.2.10, Google Translate has been 
shown to perform better across all tested languages 
(Arabic, English, French, German, Hebrew, Italian, 
Russian, Ukrainian) when translating examples containing 
occupations that conform to societal biases about gender 
roles. Additionally, these systems translate sentences 
with the correct gender only up to 60% of the time. Other 
major commercial machine translation systems (Microsoft 
Translator, Amazon Translate, SYSTRAN) have been shown 
to behave similarly.

https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html
https://alibaba-cloud.medium.com/translating-100-billion-words-every-day-for-e-commerce-with-alibaba-machine-translation-b592ae52f697
https://aclanthology.org/P19-1164.pdf
https://aclanthology.org/P19-1164.pdf
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WORD AND IMAGE EMBEDDING 
ASSOCIATION TESTS
Word embedding is a technique in NLP that allows words 
with similar meanings to have similar representations. 
Static word embeddings are fixed representations which 
do not change with context. For example, polysemous 
words will have the same representation (embedding) 
regardless of the sentence in which they appear. Examples 
of static word embeddings include GloVe, PPMI, FastText, 
CBoW, and Dict2vec. In contrast, contextualized word 
embeddings are dynamic representations of words that 
change based on the word’s accompanying context. For 
example, “bank” would have different representations in 
“riverbank” and “bank teller.”

The Word Embedding Association Test (WEAT) quantifies 
bias in English static word embeddings by measuring 
the association (“effect size”) between concepts (e.g., 
European-American and African American names) and 
attributes (e.g., pleasantness and unpleasantness). 
Word embeddings trained on large public corpora 
(e.g., Wikipedia, Google News) consistently replicate 
stereotypical biases when evaluated on WEAT (e.g., 
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associating male terms with “career” and female 
terms with “family”). CEAT (Contextualized Embedding 
Association Test) extends WEAT to contextualized word 
embeddings.

The Image Embedding Association Test (iEAT) modifies 
WEAT to measure associations between social concepts 
and image attributes. Using iEAT, researchers showed that 
pretrained generative vision models (iGPT and simCLRv2) 
exhibit humanlike biases with regard to gender, race, age, 
and disability.

Word embeddings can be aggregated into sentence 
embeddings with models known as sentence encoders. 
The Sentence Encoder Association Test (SEAT) extends 
WEAT to measure bias in sentence encoders related 
to gendered names, regional names, and stereotypes. 
Newer transformer-based language models which use 
contextualized word embeddings appear to be less biased 
than their predecessors, but most models still show 
significant bias with regard to gender and occupations, 
as well as African American names versus European-
American names, as shown in Figure 3.2.11.

https://arxiv.org/abs/1608.07187v4
https://arxiv.org/abs/2006.03955
https://arxiv.org/abs/2010.15052
https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://medium.com/syncedreview/google-brains-simclrv2-achieves-new-sota-in-semi-supervised-learning-1ac5f591c5ae
https://arxiv.org/abs/1903.10561
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Word embeddings also reflect cultural shifts: A temporal 
analysis of word embeddings over 100 years of U.S. Census 
text data shows that changes in embeddings closely track 
demographic and occupational shifts over time. Figure 
3.2.12 shows that shifts in embeddings trained on the 
Google Books and Corpus of Historical American English 
(COHA) corpora reflect significant historical events like the 
women’s movement in the 1960s and Asian immigration 
to the United States. In this analysis, embedding bias is 
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measured with the relative norm difference: the average 
Euclidean distance between words associated with 
representative groups (e.g., men, women, Asians) and 
words associated with occupations. The blue line shows 
gender bias over time, where negative values indicate 
that embeddings more closely associate occupations with 
men. The red line shows the bias of embeddings relating 
race to occupations, specifically in the case of Asian 
Americans and whites.

https://www.pnas.org/content/115/16/E3635
https://www.pnas.org/content/115/16/E3635
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3.2 Natural Language Processing Bias Metrics

Multilingual Word Embeddings
Large language models are often monolingual 
since they require a significant amount of text data 
to train. While English text can be easily sourced 
by scraping the internet, the challenge is greater 
with low-resource languages like Fula. XWEAT is a 
multilingual and cross-lingual extension of WEAT 
that is designed for comparative bias analyses 
between languages. Results on XWEAT show that 
bias in cross-lingual embeddings can roughly be 
predicted from the biases in the corresponding 
monolingual embedding, indicating that biases can 
be transferred between languages.

Another study on gender bias extends WEAT 
to quantify biases in bilingual embeddings in 
languages with grammatical gender, such as 
Spanish or French. Figure 3.2.13 shows that 
masculine words in Spanish are closer to the 
English words for historically male-dominated 
occupations (e.g., architect) as well as the 
neutral position, as indicated by the vertical line. 
Similarly, feminine occupation words are closer to 
English words for historically female-dominated 
occupations (e.g., nurse). 
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Source: Zhou et al., 2019 | Chart: 2022 AI Index Report

Figure 3.2.13

Mitigating Bias in Word Embeddings With 
Intrinsic Bias Metrics
It is often assumed that reducing intrinsic bias by de-
biasing embeddings will reduce downstream biases 
in applications (extrinsic bias). However, it has been 

demonstrated that there is no reliable correlation 
between intrinsic bias metrics and downstream 
application biases. Further investigation is needed to 
establish meaningful relationships between intrinsic and 
extrinsic metrics.

https://aclanthology.org/2020.lrec-1.341/
https://aclanthology.org/S19-1010.pdf
https://aclanthology.org/D19-1531/
https://arxiv.org/abs/2012.15859
https://arxiv.org/pdf/2108.07258.pdf
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ACM CONFERENCE ON FAIRNESS, 
ACCOUNTABILITY, AND 
TRANSPARENCY (FACCT)
ACM FAccT is an interdisciplinary conference publishing 
research in algorithmic fairness, accountability, and 
transparency.7 While several AI conferences offer 
workshops dedicated to similar topics, FAccT was one 
of the first major conferences created to bring together 
researchers, practitioners, and policymakers interested in 
sociotechnical analysis of algorithms.

3.3 AI ETHICS TRENDS AT FACCT 
AND NEURIPS

Artificial Intelligence
Index Report 2022

To grasp how the field of AI ethics has evolved over time, this section studies trends from the ACM Conference on Fairness, Accountability, 
and Transparency (FAccT), which publishes work on algorithmic fairness and bias, and from NeurIPS workshops. The section identifies 
emergent trends in workshop publication topics and shares insights on authorship trends by affiliation and geographic region.

3.3 AI Ethics Trends at FAccT and NeurIPS
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Figure 3.3.1

Education
Industry
Government
Nonpro!t
Other

Figure 3.3.1 shows that industry labs are making up a 
larger share of publications at FAccT year over year. They 
often produce work in collaboration with academia but 
are increasingly producing standalone work as well. In 
2021, 53 authors listed an industry affiliation, up from 
31 authors in 2020 and only 5 authors at the inaugural 
conference in 2018. This aligns with recent findings that 
point to a trend of deep learning researchers transitioning 
from academia to industry labs.

7  Work accepted by FAccT includes technical frameworks for measuring fairness, investigations into the harms of AI in specific industries (e.g., discrimination in online advertising, biases in 
recommender systems), proposals for best practices, and better data collection strategies. Several works published at FAccT have become canonical works in AI ethics; examples include Model Cards for 
Model Reporting (2019) and On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? (2021). Notably, FAccT publishes a significant amount of work critical of contemporary methods and 
systems in AI.

https://arxiv.org/abs/2102.01648
https://proceedings.mlr.press/v81/datta18a.html
http://proceedings.mlr.press/v81/ekstrand18b.html
https://dl.acm.org/doi/10.1145/3442188.3445918
https://arxiv.org/abs/1912.10389
https://arxiv.org/abs/1810.03993
https://arxiv.org/abs/1810.03993
https://dl.acm.org/doi/10.1145/3442188.3445922
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While there has been increased interest in fairness, 
accountability, and transparency research from all types 
of organizations, the majority of papers published at FAccT 
are written by researchers based in the United States, 

followed by researchers based in Europe and Central Asia 
(Figure 3.3.2). From 2020 to 2021, the proportion of papers 
from institutions based in North America increased from 
70.2% to 75.4%.

3.3 AI Ethics Trends at FAccT and NeurIPS
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NEURIPS WORKSHOPS
NeurIPS, one of the largest AI conferences, held its first 
workshop on fairness, accountability, and transparency in 
2014. Figure 3.3.3 shows the number of research papers 

at NeurIPS ethics-related workshops in the past six years 
by research topic, indicating an increased interest in 
AI applied to high-risk, high-impact use cases such as 
climate, finance, and healthcare.
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Interpretability, Explainability, and  
Causal Reasoning
Several workshops have been created at NeurIPS around 
interpretability and explainability, including safety-
critical AI affecting human decisions,8 interpretability 
and causality for algorithmic fairness,9 and the necessity 
of explainability for high-risk use cases.10 Interpretability 
and explainability work focus on designing systems that 
are inherently interpretable and providing explanations 
for the behavior of a black-box system, while the study of 
causal inference aims to understand cause and effect by 
uncovering associations between variables that depend 
on each other and asking what would have happened if a 
different decision had been made—that is, if this had not 
occurred, then that would not have happened.

Counterfactual analysis can be used to gain insight into 
a black-box system by changing an input feature and 
observing how the output changes. This can be applied to 

measure fairness by changing protected attributes of an 
individual input (e.g., race, gender) and observing how the 
model outputs a different prediction—for example, a bank 
can change the “age” feature in a model to understand if 
its model performs fairly on customers over 60 years old. 
Counterfactual fairness formalizes the idea that a model 
makes fair decisions with regard to an individual if the 
decision would be the same if the individual belonged to a 
different demographic. 

Since 2018, an increasing number of papers on causal 
inference have been published at NeurIPS. In 2021, there 
were three workshops at NeurIPS dedicated to causal 
inference, including one devoted entirely to causality and 
algorithmic fairness (Figure 3.3.4). Figure 3.3.5 shows that 
there has been a similar increase in research papers in 
interpretability and explainability work at NeurIPS over 
time, especially in the NeurIPS main track.
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8 See 2017 Transparent and Interpretable Machine Learning in Safety Critical Environments, 2019 Workshop on Human-Centric Machine Learning: Safety and Robustness in Decision-Making, 2019, 
“‘Do the Right Thing’: Machine Learning and Causal Inference for Improved Decision-Making.”
9 See 2020 “Algorithmic Fairness Through the Lens of Causality and Interpretability.”
10 See 2020 “Machine Learning for Health (ML4H): Advancing Healthcare for All,” 2020 Workshop on Fair AI in Finance.

https://arxiv.org/abs/1811.10154
https://arxiv.org/abs/1702.08608
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
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Privacy and Data Collection
Amid growing concerns about privacy, data sovereignty, 
and the commodification of personal data for profit, there 
has been significant momentum in industry and academia 
to build methods and frameworks to help mitigate 
privacy concerns. Since 2018, several workshops have 
been devoted to privacy in machine learning, covering 
topics such as privacy in machine learning within specific 

domains (e.g., financial services), federated learning for 
decentralized model training, and differential privacy 
to ensure that training data does not leak personally 
identifiable information.11 This section shows the number 
of papers submitted to NeurIPS mentioning “privacy” in 
the title along with papers accepted to privacy-themed 
NeurIPS workshops, and finds a significant increase in the 
number of accepted papers since 2016 (Figure 3.3.6).
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11 See “Privacy Preserving Machine Learning,” Workshop on Federated Learning for Data Privacy and Confidentiality, Privacy in Machine Learning (PriML).
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Fairness and Bias
In 2020, NeurIPS started requiring authors to submit 
broader impact statements addressing the ethical and 
potential societal consequences of their work, a move 
that suggests the community is signaling the importance 
of AI ethics early in the research process. One measure of 
the interest in fairness and bias at NeurIPS over time is 

the number of papers accepted to the conference main 
track that mention fairness or bias in the title, along 
with papers accepted to a fairness-related workshop. 
Figure 3.3.7 shows a sharp increase from 2017 onward, 
demonstrating the newfound importance of these topics 
within the research community.
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https://neurips.cc/Conferences/2020/CallForPapers
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FACT-CHECKING WITH AI
In recent years, social media platforms have deployed 
AI systems to help manage the proliferation of online 
misinformation. These systems may aid human fact-
checkers by identifying potential false claims for them to 
review, surfacing previously fact-checked similar claims, or 
surfacing evidence that supports a claim. Fully automated 
fact-checking is an active area of research: In 2017, the 
Fake News Challenge encouraged researchers to build 
AI systems for stance detection, and in 2019, a Canadian 

3.4 FACTUALITY AND TRUTHFULNESS
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This section analyzes trends in using AI to verify the factual accuracy of claims, as well as research related to measuring the truthfulness 
of AI systems. It is imperative that AI systems deployed in safety-critical contexts (e.g., healthcare, finance, disaster response) provide 
users with knowledge that is factually accurate, but today’s state-of-the-art language models have been shown to generate false 
information about the world, making them unsafe for fully automated decision making.

3.4 Factuality and Truthfulness
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venture capital firm invested $1 million in an automated 
fact-checking competition for fake news.

The research community has developed several 
benchmarks for evaluating automatic fact-checking 
systems, where verifying the factuality of a claim is posed 
as a classification or scoring problem (e.g., with two 
classes classifying whether the claim is true or false). 
Figure 3.4.1 shows that most datasets binarize labels into 
true or false categories, while some datasets have many 
categories for claims.

https://ai.facebook.com/blog/heres-how-were-using-ai-to-help-detect-misinformation/
https://arxiv.org/abs/2103.07769
https://arxiv.org/abs/2103.07769
https://aclanthology.org/C18-1158/
https://arxiv.org/abs/1906.07241
https://www.leaders.vc/post/the-leaders-prize


131Chapter 3 PreviewTable of Contents

Artificial Intelligence
Index Report 2022

The increased interest in automated fact-checking 
is evidenced by the number of citations of relevant 
benchmarks: FEVER is a fact extraction and verification 
dataset made up of claims classified as supported, refuted, 
or not enough information. LIAR is a dataset for fake news 
detection with six fine-grained labels denoting varying 
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Figure 3.4.2

levels of factuality. Similarly, Truth of Varying Shades is a 
multiclass political fact-checking and fake news detection 
benchmark. Figure 3.4.2 shows that these three English 
benchmarks have been cited with increasing frequency in 
recent years.

https://arxiv.org/abs/1803.05355v3
https://arxiv.org/abs/1705.00648
https://aclanthology.org/D17-1317/
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Figure 3.4.3 shows the number of fact-checking datasets 
created for English compared to all other languages 
over time. As seen in Figure 3.4.4, there are only 35 non-
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Figure 3.4.4

English datasets (including 14 in Arabic, 5 in Chinese, 3 
in Spanish, 3 in Hindi, and 2 in Danish) compared to 142 
English-only datasets.12

12 Modern language models are trained on disproportionately larger amounts of English text, which negatively impacts performance on other languages. The Gopher family of models is trained on MassiveText 
(10.5 TB), which is 99% English. Similarly, only 7% of training data in GPT-3 was in languages other than English. See the Appendix for a comparison of a multilingual model (XGLM-564M) and GPT-3.
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Measuring Fact-Checking Accuracy  
With FEVER Benchmark 
FEVER (Fact Extraction and VERification) is a benchmark 
measuring the accuracy of fact-checking systems, where 
the task requires systems to verify the factuality of a 
claim with supporting evidence extracted from English 
Wikipedia. Systems are measured on classification 
accuracy and FEVER score, a custom metric which 
measures whether the claim was correctly classified and 

3.4 Factuality and Truthfulness
CHAPTER 3: TECHNICAL AI ETHICS

2018 2019 2020 2021

60

65

70

75

80

Sc
or

e

79.35, Label Accuracy

76.78, FEVER Score

FACT EXTRACTION and VERIFICATION (FEVER) BENCHMARK: ACCURACY and FEVER SCORE, 2018–21
Source: AI Index, 2021 | Chart: 2022 AI Index Report

Figure 3.4.5

at least one set of supporting evidence was correctly 
identified. Several variations of this dataset have 
since been introduced (e.g., FEVER 2.0, FEVEROUS, 
FoolMeTwice). 

Figure 3.4.5 shows that state-of-the-art performance has 
steadily increased over time on both accuracy and FEVER 
score. Some contemporary language models only report 
accuracy, as in the case of Gopher.

https://arxiv.org/abs/1803.05355v3
https://fever.ai/2019/task.html
https://arxiv.org/abs/2106.05707
https://arxiv.org/abs/2104.04725
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TOWARD TRUTHFUL LANGUAGE 
MODELS
While language models have become increasingly 
more coherent, they have also become more fluent at 
generating factually incorrect statements and fabricating 
falsehoods. This increased fluency means they also have 
a greater capacity to perpetuate harm by, for instance, 
creating convincing conspiracy theories. 

Model Size and Truthfulness 
TruthfulQA is a benchmark designed to evaluate the 
truthfulness of language models on question answering, 
with questions drawn from categories such as health, 
law, finance, and politics. Questions were designed such 
that humans might be prone to answer incorrectly due 
to common misconceptions: For example, when asked, 
“What happens if you smash a mirror?” GPT-3 responds, 
“You will have seven years of bad luck.”

The task is formulated as an open-ended generative 
task, where systems are evaluated on the truthfulness 
and informativeness of their answers (e.g., answering 

3.4 Factuality and Truthfulness
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Figure 3.4.6

Model

“I don’t know” may be truthful but not informative). A 
combination of metrics adapted from machine translation 
(BLEURT, ROUGE, and BLEU) are used to compare the 
model answer to reference answers. In this setting, a small 
model called GPT-Judge is also learned to predict human 
evaluations of truthfulness and informativeness for a 
given answer. Alternatively, the task can be formulated 
as a multiple-choice task where models are evaluated on 
their accuracy in selecting the correct answer.

In the multiple-choice version of this task, initial 
experiments on GPT-Neo, GPT-2, T5 (UnifiedQA), and GPT-
3 showed that larger models provide more informative 
answers but are not necessarily more truthful. Later 
experiments on DeepMind’s Gopher model contradicted 
this finding: Figure 3.4.6 from the Gopher paper 
shows that accuracy improves with model size on the 
multiple-choice task. This contradiction may be due to 
the formulation of the TruthfulQA dataset, which was 
collected adversarially against GPT-3 175-B, possibly 
explaining the lower performance of the GPT-3 family of 
models.

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/convinceme
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://storage.googleapis.com/deepmind-media/research/language-research/Training%20Gopher.pdf
https://storage.googleapis.com/deepmind-media/research/language-research/Training%20Gopher.pdf
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WebGPT was designed to improve the factual accuracy 
of GPT-3 by introducing a mechanism to search the Web 
for sources to cite when providing answers to questions. 
Similar to Gopher, WebGPT also shows more truthful 
and informative results with increased model size. While 
performance improves compared to GPT-3, WebGPT 
still struggles with out-of-distribution questions, and its 
performance is considerably below human performance. 
However, since WebGPT cites sources and appears more 
authoritative, its untruthful answers may be more harmful 
as users may not investigate cited material to verify each 
source.

InstructGPT models are a variant of GPT-3 and they use 
human feedback to train a model to follow instructions, 
created by fine-tuning GPT-3 on a dataset of human-
written responses to a set of prompts. The fine-tuned 
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Figure 3.4.7

Model

models using human-curated responses are called SFT 
(supervised fine-tuning). The baseline SFT is further 
fine-tuned using reinforcement learning from human 
feedback. This family is called PPO because it uses a 
technique called Proximal Policy Optimization. Finally, 
PPO models are further enhanced and called InstructGPT.

Figure 3.4.7 shows the truthfulness of eight language 
model families on the TruthfulQA generation task. Similar 
to the scaling effect observed in the Gopher family, the 
WebGPT and InstructGPT models yield more truthful and 
informative answers as they scale. The exception to the 
scaling trend is the supervised fine-tuned InstructGPT 
baseline, which corroborates observations from the 
TruthfulQA paper that the baseline GPT-3 family of models 
underperforms with scale.

https://openai.com/blog/improving-factual-accuracy/
https://storage.googleapis.com/deepmind-media/research/language-research/Training%20Gopher.pdf
https://arxiv.org/abs/2112.09332v1
https://arxiv.org/abs/2112.09332v1
https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf
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Multimodal Biases in Contrastive  
Language-Image Pretraining (CLIP)
Techniques used in natural language processing 
such as the transformer architecture have recently 
been adapted to the vision and multimodal 
domains. General-purpose models such as CLIP, 
ALIGN, FLAVA, Florence, and Wu Dao 2 are 
trained on joint vision-language datasets compiled 
from the internet and can be used for a wide range 
of downstream vision tasks, such as classification. 

CLIP (Contrastive Language-Image Pretraining) is 
a model that learns visual concepts from natural 
language by training on 400 million image-text 
pairs scraped from the internet, and it is capable 
of outperforming the best ImageNet-trained 
models on a variety of visual classification tasks. 
Like other models pretrained on internet corpora, 
CLIP exhibits biases along gender, race, and age. 
However, while benchmarks exist for measuring 
bias within computer vision and natural language, 
there are no well-established metrics for 
measuring multimodal bias. This section provides 
insight into some ways that researchers have 
probed CLIP for bias.

Denigration Harm
Exploratory probes show that the design of 
categories used in the model (i.e., ground-truth 
labels) heavily influences the biases manifested 
by CLIP. Probing the model by adding non-human 
and crime-related classes such as “animal,” 
“gorilla,” “chimpanzee,” “orangutan,” “thief,” 

“criminal,” and “suspicious person” to the FairFace 
dataset classes resulted in images of Black 
people being misclassified as nonhuman at a 
significantly higher rate than any other race (14%, 
compared to the next highest misclassification 
rate of 7.6% for images of Indians). People ages 
20 years old and younger were also more likely to 
be assigned to crime-related classes compared to 
all other age groups.

Gender Bias 
Probing CLIP with the Members of Congress 
dataset shows that labels such as “nanny” and 
“housekeeper” were associated with women, 
whereas labels such as “prisoner” and “mobster” 
were associated with men. Figure 3.4.8 shows 
the percentage of images in the Members of 
Congress dataset that are attached to a certain 
label by gender, reflecting similar gender biases 
found in commercial image recognition systems. 
Additionally, CLIP almost exclusively associates 
high-status occupation labels like “executive” 
and “doctor” with men, and disproportionately 
attaches labels related to physical appearance 
to women. These experiments show that design 
decisions such as selecting the correct similarity 
thresholds can have outsized impacts on model 
performance and biases. 

3.4 Factuality and Truthfulness
CHAPTER 3: TECHNICAL AI ETHICS

https://arxiv.org/abs/2103.00020
https://ai.googleblog.com/2021/05/align-scaling-up-visual-and-vision.html
https://arxiv.org/abs/2112.04482
https://arxiv.org/abs/2111.11432
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20bigger-stronger-faster-ai-from-china/?sh=1b1302df6fb2
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2108.02818v1
https://arxiv.org/abs/1908.04913v1
https://arxiv.org/abs/2108.02818
https://journals.sagepub.com/doi/full/10.1177/2378023120967171
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Multimodal Biases in Contrastive  
Language-Image Pretraining (CLIP) (cont’d)

3.4 Factuality and Truthfulness
CHAPTER 3: TECHNICAL AI ETHICS
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Multimodal Biases in Contrastive  
Language-Image Pretraining (CLIP) (cont’d)

3.4 Factuality and Truthfulness
CHAPTER 3: TECHNICAL AI ETHICS

Underperformance on Non-English 
Languages
CLIP can be extended to non-English languages 
by replacing the original English text encoder 
with a pretrained, multilingual model such as 
Multilingual BERT (mBERT) and fine-tuning 
further. However, its documentation cautions 
against using the model for non-English 
languages since CLIP was trained only on English 

text, and its performance has not been evaluated 
on other languages.

However, mBERT has performance gaps on low-
resource languages such as Latvian or Afrikaans,14 
which means that multilingual versions of CLIP 
trained with mBERT will still underperform. Even 
for high-resource languages, such as French and 
Spanish, there are still noticeable accuracy gaps 
in gender and age classification.

This is problematic when CLIP is used for curating 
datasets. Embeddings from CLIP were used to filter 
the LAION-400M for high-quality image-text pairs; 
however, the biases learned by CLIP were shown to 
be propagated to LAION-400M, thus affecting any 
future applications built with LAION-400M.

Propagating Learned Bias Downstream 
CLIP has also been shown to learn historical biases 
and conspiracy theories from its internet-sourced 
training dataset. As one example of learned 
historical bias, Figure 3.4.9 shows that CLIP assigns 
higher similarity to “housewife with an orange 
jumpsuit” to a picture of astronaut Eileen Collins.

Figure 3.4.9

RESULTS OF THE 
CLIP-EXPERIMENTS 

PERFORMED WITH THE 
COLOR IMAGE OF THE 

ASTRONAUT EILEEN
Source: Birthane et al., 2021

14 While mBERT performs well on high-resource languages like French, on 30% of languages (out of 104 total languages) with lower pretraining resources, it performs worse than using no pretrained 
model at all.

https://github.com/FreddeFrallan/Multilingual-CLIP
https://github.com/openai/CLIP/blob/main/model-card.md
https://arxiv.org/abs/2005.09093
https://arxiv.org/abs/2106.06683
https://laion.ai/laion-400-open-dataset/
https://arxiv.org/abs/2110.01963
https://arxiv.org/abs/2110.01963
https://arxiv.org/abs/2005.09093
https://arxiv.org/abs/2005.09093
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Overview
The growing use of artificial intelligence (AI) in everyday life, across 

industries, and around the world generates numerous questions about 

how AI is shaping the economy and education—and, conversely, how 

the economy and education are adapting to AI. AI promises many 

opportunities in workplace productivity, supply chain efficiency, 

customized consumer experiences, and other areas. At the same time, 

however, the technology gives rise to a number of concerns. How 

do businesses adapt to recruiting and retaining AI talent? How is the 

education system keeping pace with the demand for AI labor and the 

need to understand AI’s impact on society? All of these questions and 

more are inextricable from AI today.

This chapter examines the economy and education, using data 

from Emsi Burning Glass, NetBase Quid, and LinkedIn to capture AI 

trends in the global economy and data from the annual Computing 

Research Association Taulbee Report to analyze trends in AI and 

computer science PhD graduates. The chapter first examines AI’s 

impact on jobs, including hiring, labor demand, and skill penetration 

rate, followed by an analysis of corporate investments in AI—from 

global trends to startup activity in the space, and the adoption of AI 

technologies among industries. The final section discusses computer 

science (CS) undergraduate graduates and PhD graduates who 

specialize in AI-related disciplines.
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CHAPTER HIGHLIGHTS

•  New Zealand, Hong Kong, Ireland, Luxembourg, and Sweden are the countries or regions with 
the highest growth in AI hiring from 2016 to 2021.

•  In 2021, California, Texas, New York, and Virginia were states with the highest number of AI job 
postings in the United States, with California having over 2.35 times the number of postings 
as Texas, the second greatest. Washington, D.C., had the greatest rate of AI job postings 
compared to its overall number of job postings.

•  The private investment in AI in 2021 totaled around $93.5 billion—more than double the 
total private investment in 2020, while the number of newly funded AI companies continues 
to drop, from 1051 companies in 2019 and 762 companies in 2020 to 746 companies in 2021.  
In 2020, there were 4 funding rounds worth $500 million or more; in 2021, there were 15.

•  “Data management, processing, and cloud” received the greatest amount of private AI 
investment in 2021—2.6 times the investment in 2020, followed by “medical and healthcare” 
and “fintech.”

•  In 2021, the United States led the world in both total private investment in AI and the number 
of newly funded AI companies, three and two times higher, respectively, than China, the next 
country on the ranking.

•  Efforts to address ethical concerns associated with using AI in industry remain limited, 
according to a McKinsey survey. While 29% and 41% of respondents recognize “equity and 
fairness” and “explainability” as risks while adopting AI, only 19% and 27% are taking steps 
to mitigate those risks.

•  In 2020, 1 in every 5 CS students who graduated with PhD degrees specialized in artificial 
intelligence/machine learning, the most popular specialty in the past decade. From 2010 to 
2020, the majority of AI PhDs in the United States headed to industry while a small fraction 
took government jobs.
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Figure 4.1.1

AI HIRING 
The AI hiring data draws on a dataset from LinkedIn 
of skills and jobs listings on the platform. It focuses 
specifically on countries or regions where LinkedIn covers 
at least 40% of the labor force and where there are at 
least 10 AI hires each month. China and India were also 
included due to their global importance, despite not 
meeting the 40% coverage threshold. Insights for these 
countries may not provide as full a picture as others, and 
should be interpreted accordingly.

Figure 4.1.1 shows the 15 geographic areas with the 
highest relative AI hiring index for 2021. The AI hiring 
rate is calculated as the percentage of LinkedIn members 
with AI skills on their profile or working in AI-related 
occupations who added a new employer in the same 
period the job began, divided by the total number of 
LinkedIn members in the corresponding location. This 
rate is then indexed to the average month in 2016; for 

4.1 JOBS
example, an index of 1.05 in December 2021 points to a 
hiring rate that is 5% higher than the average month in 
2016. LinkedIn makes month-to-month comparisons to 
account for any potential lags in members updating their 
profiles. The index for a year is the number in December 
of that year.

The relative AI hiring index captures whether hiring of 
AI talent is growing faster than, equal to, or more slowly 
than overall hiring in a particular country or region. 
New Zealand has the highest growth in AI hiring—2.42 
times greater in 2021 compared with 2016, followed by 
Hong Kong (1.56), Ireland (1.28), Luxembourg (1.26), 
and Sweden (1.24). Moreover, many countries or regions 
experienced a decrease in their AI hiring growth from 
2020 to 2021—indicating that the pace of change in the 
AI hiring rate, against the rate of overall hiring, declined 
over the last year, with the exception of Germany and 
Sweden (Figure 4.1.2).

4.1 Jobs
CHAPTER 4: THE ECONOMY AND EDUCATION
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AI LABOR DEMAND 
To analyze demand for specific AI labor skills, Emsi 
Burning Glass mined millions of job postings collected 
from over 45,000 websites since 2010 and flagged all 
listings calling for AI skills.

Global AI Labor Demand
Figure 4.1.3 shows that the percentage of AI job postings 
among all job postings in 2021 was greatest in Singapore 
(2.33% of all job listings), followed by the United States 
(0.90%), Canada (0.78%), and the United Kingdom 
(0.74%). AI job postings increased in the United States, 
Canada, Australia, and New Zealand from 2020 to 
2021, while they declined in Singapore and the United 
Kingdom.

4.1 Jobs
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Figure 4.1.3
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U.S. AI Labor Demand: By Skill Cluster
Figure 4.1.4 shows the U.S. labor demand from 2010 
to 2021 by skill cluster. Each skill cluster consists of a 
list of AI-related skills; for example, the neural network 
skill cluster includes skills like deep learning and 
convolutional neural networks.1 The share of AI job 
postings among all job postings in 2021 was greatest 
for machine learning skills (0.6% of all job postings), 
followed by artificial intelligence (0.33%), neural 
networks (0.16%), and natural language processing 
(0.13%). Postings for AI jobs in machine learning and 
artificial intelligence have significantly increased in 
the past couple of years, despite small declines in 
both categories from 2019–2020. Machine learning 
jobs are at nearly three times the level, and artificial 
intelligence jobs are at around 1.5 times the level they 
each reached, respectively, in 2018.

4.1 Jobs

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

A
I J

ob
 P

os
ti

ng
s 

(%
 o

f A
ll 

Jo
b 

P
os

ti
ng

s)

 0.10%, Visual Image Recognition
 0.11%, Robotics

 0.15%, Neural Networks
 0.13%, Natural Language Processing (NLP)

 0.57%, Machine Learning

 0.06%, Autonomous Driving

 0.33%, Arti cial Intelligence

AI JOB POSTINGS (% of ALL JOB POSTINGS) in the UNITED STATES by SKILL CLUSTER, 2010–21
Source: Emsi Burning Glass, 2021 | Chart: 2022 AI Index Report

Figure 4.1.4

1 See the Appendix for a complete list of AI skills under each skill cluster.

The share of AI job postings 
among all job postings 
in 2021 was greatest for 
machine learning skills (0.6% 
of all job postings), followed 
by artificial intelligence 
(0.33%), neural networks 
(0.16%), and natural 
language processing (0.13%).
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U.S. Labor Demand: By Sector
Figure 4.1.5 shows that 3.30% of all job postings in the 
information sector in the United States were AI-related, 

U.S. Labor Demand: By State
Figure 4.1.6 breaks down the U.S. 
AI labor demand by state. In 2021, 
the top states posting AI jobs 
were California (80,238), Texas 
(34,021), New York (24,494), and 
Virginia (19,387). California, in first, 
had over 2.35 times the number 
of postings as Texas, the second 
greatest. Proportionally, however, 
Washington, D.C., had the greatest 
rate of AI job postings compared to 
its overall number of job postings 
(Figure 4.1.7). That was followed by 
Virginia, Washington, Massachusetts, 
and California.

followed by professional, scientific, and technical 
services (2.59% of all listings), manufacturing (2.02%), 
and finance and insurance (1.81%). 
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AI SKILL PENE TRATION
The AI skill penetration rate shows the prevalence 
of AI skills across occupations, or the intensity with 
which LinkedIn members use AI skills in their jobs. It is 
calculated by computing the frequencies of LinkedIn 
users’ self-added skills in a given area from 2015–2021, 
then reweighting those figures by using a statistical 
model to get the top 50 representative skills in that 
occupation.

Global Comparison
For global comparison, the relative penetration rate of 

AI skills is measured as the sum of the penetration of 
each AI skill across occupations in a given country or 
region, divided by the global average across the same 
occupations. For example, a relative penetration rate of 
2 means that the average penetration of AI skills in that 
country or region is 2 times the global average across the 
same set of occupations. Figure 4.1.8 shows that India 
led the world in the rate of AI skill penetration—3.09 
times the global average from 2015 to 2021—followed 
by the United States (2.24) and Germany (1.7). After that 
came China (1.56), Israel (1.52), and Canada (1.41).2

4.1 Jobs
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Figure 4.1.8

2 Those included are a sample of eligible countries or regions with at least 40% labor force coverage by LinkedIn and at least 10 AI hires in any given month. China and India were also included in this 
sample because of their increasing importance in the global economy, but LinkedIn coverage in these countries does not reach 40% of the workforce. Insights for these countries may not provide as full a 
picture as in others, and should be interpreted accordingly.

Global Comparison: By Industry
India and the United States had the highest relative 
AI skill penetration across the board—leading the 
other countries or regions in skill penetration rates in 
software and IT services, hardware and networking, 

manufacturing, education, and finance (Figure 4.1.9). 
Israel and Canada are among the top seven countries 
across all five industries, and Singapore holds the fourth 
position on the list. 
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Figure 4.1.10

Female
Male

Global Comparison: By Gender
Figure 4.1.10 shows the aggregated data from 2015 to 2021 of AI skills penetration by geographic area for female and 
male talent. The data suggests that among the 15 countries listed, the AI skill penetration rates of females are higher than 
those of males in India, Canada, South Korea, Australia, Finland, and Switzerland.
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This section on corporate AI activity draws on data from NetBase Quid, which aggregates over 6 million global public and private 
company profiles, updated on a weekly basis, including metadata on investments, location of headquarters, and more. NetBase Quid 
also applies natural language processing technology to search, analyze, and identify patterns in large, unstructured datasets, like 
aggregated blogs, company and patent databases.
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Figure 4.2.1
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Private Investment
Public O"ering

CORPORATE INVESTMENT 
Corporate investment in artificial intelligence, from 
mergers and acquisitions to public offerings, is a key 
contributor to AI research and development. It also 
contributes to AI’s impact on the economy. Figure 4.2.1 
highlights overall global corporate investment in AI from 
2013–2021. In 2021, companies made the greatest AI 

4.2 INVESTMENT
investment through private investment (totaling around 
$93.5 billion), followed by mergers and acquisitions 
(around $72 billion), public offerings (around $9.5 
billion), and minority stake (around $1.3 billion). In 
2021, investments from mergers and acquisitions grew 
by 3.3 times compared to 2020, led by two AI healthcare 
companies and two cybersecurity companies.3

4.2 Investment
Artificial Intelligence
Index Report 2022

3 Nuance Communications (by Microsoft, $19.8 billion), Varian Medical Systems (Siemens, $17.2 billion), and Proofpoint (Thoma Bravo, $12.4 billion) in the United States, followed by Avast in the 
Czech Republic (NortonLifeLock, $8.0 billion).
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STARTUP ACTIVIT Y
The following section analyzes artificial intelligence and 
machine learning companies globally that have received 
more than $1.5 million in investment from 2013 to 2021.

Global Trend
In 2021, global private investment in AI totaled around 
$93.5 billion, which is more than double the total 
private investment in 2020 (Figure 4.2.2). That marks 
the greatest year-over-year increase since 2014 (when 
investment from 2013 to 2014 more than doubled).

Among companies that disclosed the amount of funding, 
the number of AI funding rounds that ranged from 
$100 million to $500 million more than doubled in 2021 
compared to 2020, while funding rounds that were 
between $50 million and $100 million more than doubled 
as well (Table 4.2.1). In 2020, there were only four funding 
rounds worth $500 million or more; in 2021, that number 
grew to 15. Companies attracted significantly higher 
investment in 2021, as the average private investment 
deal size in 2021 was 81.1% higher than in 2020.

However, Figure 4.2.3 shows that the number of newly 
funded AI companies continues to drop, from 762 
companies in 2020 to 746 companies in 2021—the 
third year of a decline that started in 2018. The largest 
private investments in 2021 have been led by two data 
management companies and two robotics/autonomous 
driving companies.4
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Figure 4.2.2

4 The largest private investments have been Databricks (United States), Beijing Horizon Robotics Technology (China), Oxbotica Limited (United Kingdom), and Celonis (Germany).

4.2 Investment

In 2021, global private 
investment in AI totaled 
around $93.5 billion, 
which is more than 
double the total private 
investment in 2020.
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Figure 4.2.3

4.2 Investment

Funding Size 2020 2021 Total

Over $1 billion 3 5 8

$500 million – $1 billion 1 10 11

$100 million – $500 million 93 235 328

$ 50 million – $100 million 85 194 279

Under $50 million 2,102 2,120 4,222

Undisclosed 354 395 749

Total 2,638 2,959 5,597

Table 4.2.1
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Regional Comparison by Funding Amount
In 2021, as captured in Figure 4.2.4, the United States 
led the world in overall private investment in funded AI 
companies—at approximately $52.9 billion—over three 
times the next country on the list, China ( $17.2 billion). 
In third place was the United Kingdom ($4.65 billion), 
followed by Israel ($2.4 billion) and Germany ($1.98 
billion). Figure 4.2.5 shows that when combining total 
private investment from 2013 to 2021, the same ranking 
applies: U.S. investment totaled $149 billion and Chinese 
investment totaled $61.9 billion, followed by the United 

Kingdom ($10.8 billion), India ($10.77 billion), and Israel 
($6.1 billion). Notably, U.S. private investment in AI 
companies from 2013–2021 was more than double the 
total in China, which itself was about six times the total 
investment from the United Kingdom in the same period. 
Broken out by geographic area, as shown in Figure 
4.2.6, the United States, China, and the European Union 
all grew their investments from 2020 to 2021, with the 
United States leading China and the European Union by 
3.1 and 8.2 times the investment amount, respectively.
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Figure 4.2.4
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Figure 4.2.5
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Figure 4.2.6
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Regional Comparison by Newly Funded  
AI Companies
This section breaks down the investment data by the 
number of newly funded AI companies in each region. For 
2021, Figure 4.2.7 shows that the United States led with 
299 companies, followed by China with 119, the United 
Kingdom with 49, and Israel with 28. The gaps between 
each are significant. Aggregated data from 2013 to 2021 

shows a similar trend (Figure 4.2.8).

However, the number of newly funded AI companies has 
declined in both the United States and China since 2018 
and 2019 (Figure 4.2.9). Despite that downward trend, 
the United States still leads in the number of newly 
funded companies, with 299 funded in 2021, followed by 
China (119) and the European Union (96).
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Figure 4.2.7
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Figure 4.2.8
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Figure 4.2.9
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Focus Area Analysis
Private AI investment also varies by focus area. According 
to Figure 4.2.10, the greatest private investment in AI in 
2021 was in data management, processing, and cloud 
(around $12.2 billion). Notably, this was 2.6 times the 
investment in 2020 (around $4.69 billion) as two of the 
four largest private investments made in 2021 are data 
management companies. In second place was private 
investment in medical and healthcare ($11.29 billion), 
followed by fintech ($10.26 billion), AV ($8.09 billion), and 
semiconductors ($6.0 billion).

Aggregated data in Figure 4.2.11 shows that in the last 
five years, the medical and healthcare category received 
the largest private investment globally ($28.9 billion); 
followed by data management, processing, and cloud 
($26.9 billion); fintech ($24.9 billion); and retail ($21.95 
billion). Moreover, Figure 4.2.12 shows the overall trend 
in private investment by industries from 2017–2021 and 
reveals a steady increase in AV, cybersecurity and data 
protection, fitness and wellness, medical and healthcare, 
and semiconductor industries.
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Figure 4.2.10
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Figure 4.3.1

2021
2020

INDUSTRY ADOPTION 
This section on corporate AI activity draws on McKinsey’s 
“The State of AI in 2021” report from December 2021. The 
report based its conclusions on a global online survey 
of 1,843 participants conducted earlier in 2021. Survey 
respondents came from a range of industries, companies, 
functional specialties, tenures, and regions of the world—
and each provided answers to questions about the state 
of artificial intelligence today.

4.3 CORPORATE ACTIVITY
Global Adoption of AI
Figure 4.3.1 shows AI adoption by organizations globally, 
broken out by geographic area. In 2021, India led with 
65% adoption, followed by “Developed Asia-Pacific” 
(64%), “Developing markets (incl. China, MENA)” (57%), 
and North America (55%). The average adoption rate 
across all geographies was 56%, up 6% from 2020. 
Notably, “Developing markets (incl. China, MENA)” 
registered a 21% increase from 2020, and India had an 
8% increase from 2020.

4.3 Corporate Activity
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Figure 4.3.2

AI Adoption by Industry and Function
Figure 4.3.2 shows AI adoption by industry and function 
in 2021. The greatest adoption was in product and/or 
service development for high tech/telecommunications 

(45%), followed by service operations for financial 
services (40%), service operations for high tech/
telecommunications (34%), and risk function for 
financial services (32%). 

4.3 Corporate Activity
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Figure 4.3.3

Type of AI Capabilities Adopted
With respect to the type of AI capabilities embedded 
in standard business processes in 2021, as indicated 
by Figure 4.3.3, the highest rate of embedding was in 
natural language text understanding for the high tech/

telecommunications industry (34%), followed by robotic 
process automation for both the financial services and 
automotive and assembly industry (33%) and natural 
language text understanding for financial services (32%).

4.3 Corporate Activity
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Figure 4.3.4

Consideration and Mitigation of Risks  
From Adopting AI
The risk from adopting AI that survey respondents 
identified as most relevant in 2021 was cybersecurity 
(55% of respondents), followed by regulatory compliance 
(48%), explainability (41%), and personal/individual 
privacy (41%) (Figure 4.3.4). Fewer organizations found 
AI risks from cybersecurity to be relevant in 2021 than 
in 2020, declining from just over 60% of respondents 
expressing concern in 2020 to 55% in 2021. Concern over 
AI regulatory compliance risks, meanwhile, remained 
virtually unchanged from 2020.

Figure 4.3.5 shows risks from AI that organizations are 
taking steps to mitigate. Cybersecurity was the most 
frequent response (47% of respondents), followed by 
regulatory compliance (36%), personal/individual privacy 
(28%), and explainability (27%). It is worth noting the 
gaps between risks that organizations find relevant and 
risks that organizations take steps to mitigate—a gap of 10 
percentage points with equity and fairness (29% to 19%), 
12 percentage points with regulatory compliance (48% 
to 36%), 13 percentage points with personal/individual 
privacy (41% to 28%), and 14 percentage points with 
explainability (41% to 27%).

4.3 Corporate Activity
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Figure 4.3.5
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The following section draws on data from the annual Computing Research Association (CRA) Taulbee Survey. For the latest survey 
featured in this section, CRA collected data in Fall 2020 by reaching out to over 200 PhD-granting departments in the United States and 
Canada. Results are published in May 2021. The CRA survey documents trends in student enrollment, degree production, employment 
of graduates, and faculty salaries in academic units in the United States and Canada that grant doctoral degrees in computer science 
(CS), computer engineering (CE), or information (I). Academic units include departments of CS and CE or, in some cases, colleges or 
schools of information or computing. 
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Figure 4.4.1

CS UNDERGRADUATE GRADUATES 
IN NORTH AMERICA 
In North America, most AI-related courses are offered 
as part of the CS curriculum at the undergraduate level. 

4.4 AI EDUCATION
The number of new CS undergraduate graduates at 
doctoral institutions in North America has grown 3.5 
times from 2010 to 2020 (Figure 4.4.1). More than 31,000 
undergraduates completed CS degrees in 2020—an 
11.60% increase from the number in 2019.

4.4 AI Education
Artificial Intelligence
Index Report 2022
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Figure 4.4.2

NEW CS PHDS IN NORTH AMERICA 
The following sections show the trend of CS PhD graduates 
in North America with a focus on those with AI-related 
specialties.5 The CRA survey includes 20 specialties in total, 
two of which are directly related to the field of AI: artificial 
intelligence/machine learning (AI/ML) and robotics/vision.

New CS PhDs by Specialty
In 2020, 1 in every 5 CS students who graduated with 
PhD degrees specialized in AI/ML, the most popular 
specialty in the past decade (Figure 4.4.2). It is also the 
speciality that exhibits the most significant growth from 
2010 to 2021, relative to 18 other specializations (Figure 
4.4.3). Robotics/vision is also among the most popular 
CS specialties of PhD graduates in 2020, registering a 
1.4 percentage point change in the share of total new CS 
PhDs in the past 11 years. 

4.4 AI Education

5 New CS PhDs in this section include PhD graduates from academic units (departments, colleges, or schools within universities) of computer science in the United States.

In 2020, 1 in every 5  
CS students who 
graduated with PhD 
degrees specialized  
in AI/ML, the most 
popular specialty  
in the past decade.

CHAPTER 4: THE ECONOMY AND EDUCATION
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Figure 4.4.4a Figure 4.4.4b

New CS PhDs with AI/ML and Robotics/Vision Specialties
Between 2010 and 2020, the number of CS PhD graduates with AI/ML and robotics/vision specialities grew by 72.05% 
and 50.91%, respectively. The slight decrease in the total number for both specialties from 2019 to 2020 may be due to 
the impact of the COVID-19 pandemic. 
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NEW AI PHDS EMPLOYMENT IN 
NORTH AMERICA
Where do new AI PhDs choose to work following 
graduation? This section analyzes the employment 
trends of new AI PhDs across North America in academia, 
industry, and government.6

Academia vs. Industry vs. Government
In 2020, the share of new AI PhD graduates in North 

America who chose to work in the industry dipped 
slightly, with its share dropping from 65.7% in 2019 to 
60.2% in 2020, whereas the share of new AI PhDs who 
went into academia and government changed little 
(Figure 4.4.5a and Figure 4.4.5b). Note that the 2020 data 
may be impacted by the increasing number of new AI 
PhDs who went abroad upon graduation, a number that 
grew from 19 in 2019 to 32 in 2020.

4.4 AI Education

6 New AI PhDs in this section include PhD graduates who specialize in artificial intelligence from academic units (departments, colleges, or schools within universities) of computer science, 
computer engineering, and information in the United States and Canada.
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Figure 4.4.6

DIVERSIT Y OF NEW AI PHDS IN NORTH AMERICA

By Gender
Figure 4.4.6 shows that the share of new female AI and CS PhDs in North America remains low and has changed little 
from 2010 to 2020. 

4.4 AI Education
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By Race/Ethnicity
According to Figure 4.4.7, among the new AI PhDs from 2010 to 
2020 who are U.S. residents, the largest percentage has been 
non-Hispanic white and Asian—65.2% and 18.8% on average. 
By comparison, around 1.5% were Black or African American 
(non-Hispanic) and 2.9% were Hispanic on average over the 

4.4 AI Education

past 11 years. Figure 4.4.8 shows all PhDs awarded in the 
United States to U.S. residents across departments of CS, CE, 
and information between 2010 and 2020. In the past 11 years, 
the share of new white (non-Hispanic) PhDs has changed little, 
while the percentage of new Black or African American (non-
Hispanic) and Hispanic computing PhDs is significantly lower. 
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Figure 4.4.8
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Figure 4.4.7
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NEW INTERNATIONAL AI  PHDS IN 
NORTH AMERICA
The share of international students among new AI PhDs 
in North America in 2020 decreased slightly from 64.3% 
in 2019 to 60.5% in 2020 (Figure 4.4.9). For comparison, 

4.4 AI Education

of all computing PhDs graduating in 2022, 65.1% of 
them were international students. In addition, more 
international students—14.0% of all new AI PhDs—took 
jobs outside the United States in 2020, compared to 8.6% 
in 2019 (Figure 4.4.10).
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Figure 4.4.10
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Overview
As AI has become an increasingly ubiquitous topic in the last decade, 

intergovernmental, national, and regional organizations have worked to 

develop policies and strategies around AI governance. These actors are 

driven by the understanding that it is imperative to find ways to address 

the ethical and societal concerns surrounding AI, while maximizing 

its benefits. Active and informed governance of AI technologies has 

become a priority for many governments around the world.

This chapter examines the intersection of AI and governance, and takes 

a closer look at how governments in different countries, regions, and 

U.S. states are working to manage AI technologies. It begins by looking 

at AI policymaking across the globe and within the United States, 

exploring which countries and political actors are most keen to advance 

AI legislation, and what kind of AI subtopics, from privacy to ethics, are 

the focus of most legislative attention. Then the chapter takes a deep 

dive into one of the world’s top public sector investors in AI, the United 

States, and studies how much its various government departments have 

spent on AI in the past five years.

CHAPTER 5: AI POLICY AND GOVERNANCE
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CHAPTER HIGHLIGHTS

•  An AI Index analysis of legislative records on AI in 25 countries shows that the number of bills 
containing “artificial intelligence” that were passed into law grew from just 1 in 2016 to 18 in 
2021. Spain, the United Kingdom, and the United States passed the highest number of AI-related 
bills in 2021, with each adopting three.

•  The federal legislative record in the United States shows a sharp increase in the total number of 
proposed bills that relate to AI from 2015 to 2021, while the number of bills passed remains low, 
with only 2% ultimately becoming law.

•  State legislators in the United States passed 1 out of every 50 proposed bills that contain AI 
provisions in 2021, while the number of such bills proposed grew from 2 in 2012 to 131 in 2021.

•  In the United States, the current congressional session (the 117th) is on track to record the greatest 
number of AI-related mentions since 2001, with 295 mentions by the end of 2021, half way 
through the session, compared to 506 in the previous (116th) session.
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GLOBAL LEGISLATION  
RECORDS ON AI 
  Governments and legislative bodies across the globe are 
increasingly seeking to pass laws to provide funding for 
AI development and innovation, while also promoting the 
integration of human-centered values. The AI Index has 
conducted an analysis of laws passed in 25 countries by 

their legislative bodies that contain the words “artificial 
intelligence” from 2016 to 2021.

Taken together, the 25 countries analyzed have passed a 
total of 55 AI-related bills. Figure 5.2.1 demonstrates that in 
the past six years, there has been a sharp increase in terms 
of the total number of AI-related bills passed into law.1

5.1 AI AND POLICYMAKING

1 Note that the analysis only includes laws passed by national legislative bodies (e.g.  congress, parliament) with the keyword “artificial intelligence” in various languages in the title or body of the bill 
text. See the appendix for the methodology. Countries included: Australia, Belgium, Brazil, Canada, China, Denmark, Finland, France, Germany, India, Ireland, Italy, Japan, the Netherlands, New Zealand, 
Norway, Russia, Singapore, South Africa, South Korea, Spain, Sweden, Switzerland, the United Kingdom, and the United States.

Artificial Intelligence
Index Report 2022

Discussions around AI governance regulation have accelerated over the past decade, resulting in policy proposals across various 
legislative bodies. This section first examines AI-related legislation that has either been proposed or passed into law across different 
countries and regions, followed by a focused analysis of state-level legislation in the United States. It then takes a closer look at 
congressional and parliamentary records on AI across the world and concludes with data on the number of policy papers published 
in the United States.

5.1 AI and Policymaking
CHAPTER 5: AI POLICY AND GOVERNANCE
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Figure 5.1.1
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By Geographic Area
Figure 5.1.2a shows the number of laws containing 
mentions of AI that were enacted in 2021. Spain, the 
United Kingdom, and the United States led, each passing 
three. Figure 5.1.2b shows the total number of legislation 
passed in the past six years. The United States dominated 
the list with 13 bills, starting in 2017 with 3 new laws 
passed each subsequent year, followed by Russia, 
Belgium, Spain, and the United Kingdom.

5.1 AI and Policymaking
CHAPTER 5: AI POLICY AND GOVERNANCE
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The United States 
dominated the list with 13 
bills, starting in 2017 with 
3 new laws passed each 
subsequent year, followed 
by Russia, Belgium, Spain, 
and the United Kingdom.
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Federal AI Legislation in the United States
A closer look at the federal legislative record in the 
United States shows a sharp increase in the total number 
of proposed bills that relate to AI (Figure 5.1.3). In 2015, 
just one federal bill was proposed, while in 2021, there 

were 130. Although this jump is significant, the number 
of bills related to AI being passed has not kept pace with 
the growing volume of proposed AI-related bills. This gap 
was most evident in 2021, when only 2% of all federal-
level AI-related bills were ultimately passed into law. 

5.1 AI and Policymaking
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Figure 5.1.3
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A Closer Look at the Legislation
The following subsection delves into some of the AI-related legislation passed into law since 2016. 
Table 5.1.1 demonstrates the wide range of AI-related issues that have piqued policymakers’ interest.

Country Year Passed Bill Name Description

Canada 2017 Budget Implementation Act 2017, No. 1 A provision of this act authorized the Canadian 
government to make a payment of $125 million 
to the Canadian Institute for Advanced Research 
to support the development of a pan-Canadian 
artificial intelligence strategy. 

China 2019 Law of the People’s Republic of China 
on Basic Medical and Health Care and 
the Promotion of Health

A provision of this law aimed to promote the 
application and development of big data and 
artificial intelligence in the health and medical field 
while accelerating the construction of medical and 
healthcare information infrastructure, developing 
technical standards on the collection, storage, 
analysis, and application of medical and health data.

Russia 2020 Federal Law of 24 April 2020 No. 
123-FZ on the Experiment to Establish 
Special Regulation in order to Create 
the Necessary Conditions for the 
Development and Implementation of 
Artificial Intelligence Technologies in 
the Region of the Russian Federation 
– Federal City of Moscow and 
Amending the Articles 6 and 10 of the 
Federal Law on Personal Data

This law established an experimental framework 
for the development and implementation of AI as 
a five-year experiment to start in Moscow in July 
1, 2020, including allowing AI systems to process 
anonymized personal data for governmental and 
certain commercial business activities.

United Kingdom 2020 Supply and Appropriation (Main 
Estimates) Act 2020, c.13

A provision of this act authorized the Office of 
Qualifications and Examination Regulation to 
explore opportunities for using artificial intelligence 
to improve the marking and administration of high-
stakes qualifications.

United States 2020 IOGAN ACT: Identifying Outputs of 
Generative Adversarial Networks Act

This act directed the National Science Foundation 
to support research dedicated to studying the 
outputs of generative adversarial networks 
(deepfakes) and other comparable technologies.

Belgium 2021 Decree on coaching and solution-
oriented support for job seekers, N. 
327

A provision of this act directs the government 
to create an advisory group called the Ethics 
Committee, which is responsible for submitting 
advice if artificial intelligence tools are to be used 
for digitization activities.

France 2021 Law N:2021-1485 of November 
15, 2021, aimed at reducing the 
environmental footprint of digital 
technology in France

This act sets up a monitoring system to evaluate 
environmental impacts of newly emerging digital 
technologies, in particular, artificial intelligence. 

Table 5.1.1
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STATE-LEVEL AI  LEGISLATION IN 
THE UNITED STATES
Growing policy interest in AI can also be seen in the 
large number of AI-related bills recently proposed 
at the state level in the United States, based on data 
provided by Bloomberg Government since 2012. 
Bloomberg Government classified a bill as relating to 
AI if it contained AI-related keywords such as artificial 
intelligence, machine learning, or algorithmic bias.

As is the case on the federal level, there has been a 
significant increase in the number of AI bills proposed 
at the state level in the last decade (Figure 5.1.4). 
In 2012, the first two pieces of AI-related legislation 
were proposed when New Jersey assembly member 
Annette Quijano directed the New Jersey Motor Vehicle 
Commission to establish driver’s license endorsements 
for autonomous vehicles. In the past 10 years, the 
increase has been substantial, from 2 bills in 2012 to 131 
in 2021.

A notable difference between AI-related lawmaking in the 
United States on the federal versus the state level is that 

a greater proportion of proposed state-level AI bills have 
actually passed. In 2021, of the 131 proposed state bills, 
26 were passed into law (20%), or 1 out of 5 proposed 
bills became law. This ratio is significantly higher when 
compared to the federal level, where 1 out of every 50 
proposed bills became law in 2021.

5.1 AI and Policymaking
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Figure 5.1.4
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A notable difference between 
AI-related lawmaking in the 
United States on the federal 
versus the state level is 
that a greater proportion of 
proposed state-level AI bills 
have actually passed.
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By State
In the United States, AI 
lawmaking has been relatively 
widespread across all states. As 
of 2021, 41 out of 50 states have 
proposed at least one AI-related 
bill, but certain states have been 
particularly active in generating 
AI legislation. Figure 5.1.5 shows 
that Massachusetts has proposed 
the most AI bills, with 40 since 
2012, followed by Hawaii (35) 
and New Jersey (32). Focusing 
on just 2021 in Figure 5.1.6, 
Massachusetts was the state that 
proposed the most AI-related 
bills, with 20, followed by Illinois 
(15) and Alabama (12).

5.1 AI and Policymaking
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Figure 5.1.5
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Sponsorship by Political Party
State-level AI legislation data reveals that there is a 
partisan dynamic to AI lawmaking. Figure 5.1.7 plots the 
number of AI-related bills sponsored at the state level by 
Democratic and Republican lawmakers. Although there 
has been an increase in AI bills proposed by members 

of both parties since 2012, in the past four years, the 
data suggests Democrats were more likely to sponsor 
AI-related legislation. Whereas Democrats sponsored 
only two more AI bills than Republicans in 2018, they 
sponsored 39 more in 2021.
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MENTIONS OF AI  IN LEGISLATIVE 
RECORDS
Another barometer of legislative interest in AI is the 
number of mentions of “artificial intelligence” in 
governmental and parliamentary proceedings. This 
subsection considers data on mentions of AI both 
in U.S. congressional records and the parliamentary 
proceedings of other countries based on AI Index and 
Bloomberg Government data. 

AI Mentions in U.S. Congressional Records
In the last five years, and especially in 2021, U.S. 
congressional sessions have devoted increasing amounts 
of time to discussions of AI. This section presents data 

from Bloomberg Government concerning mentions of AI-
related keywords in congressional proceedings, broken 
down by legislation, congressional committee reports, 
and congressional research service reports.

According to Figure 5.1.8, the current congressional 
session (the 117th) is on track (as of the end of 2021) 
to record the greatest number of AI-related mentions 
since 2001. The most recently completed congressional 
session, the 116th (2019-2020), saw 506 AI mentions, 
nearly 3.4 times as many mentions as there were during 
the 115th session (2017–2018), and 30 times as many as 
the 114th session (2015–2016).
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AI Mentions in Global Legislative Proceedings
AI mentions in governmental proceedings are on the 
rise not only in the United States but also in many other 
countries across the world. The AI Index conducted an 
analysis on the minutes or proceedings of legislative 

sessions in 25 countries that contain the keyword 
“artificial intelligence” from 2016 to 2021. Figure 5.1.9 
shows that the mentions of AI in legislative proceedings 
in 25 select countries grew 7.7 times in the past six years.2
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Figure 5.1.9

2 See the appendix for the methodology. Countries included: Australia, Belgium, Brazil, Canada, China, Denmark, Finland, France, Germany, India, Ireland, Italy, Japan, the Netherlands, New Zealand, 
Norway, Russia, Singapore, South Africa, South Korea, Spain, Sweden, Switzerland, the United Kingdom, and the United States.
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By Geographic Area
Figure 5.1.10a shows the number of legislative 
proceedings containing mentions of AI that were 
enacted in 2021. Similar to the trend in the number of 
AI mentions in bills passed into laws, Spain, the United 

Kingdom, and the United States topped the list. Figure 
5.1.2b shows the total number of AI mentions in the past 
six years. The United Kingdom dominated the list with 
939 mentions, followed by Spain, Japan, the United 
States, and Australia.
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U.S. AI  POLICY PAPERS
To estimate activities outside national governments 
that are also informing AI-related rulemaking, the 
AI Index tracks 55 U.S.-based organizations that 
published policy papers in the past four years. Those 
organizations include: think tanks and policy institutes 
(19); university institutes and research programs (14); 
civil society organizations, associations, and consortiums 
(9); industry and consultancy organizations (9); and 
government agencies (4).3 A policy paper in this section 
is defined as a research paper, research report, brief, or 
blog post that addresses issues related to AI and makes 

specific recommendations to policymakers. Topics of 
those papers are divided into primary and secondary 
categories: A primary topic is the main focus of the paper, 
while a secondary topic is a subtopic of the paper or an 
issue that was briefly explored.

Figure 5.1.11 plots the total number of U.S.-based AI-
related policy papers that have been published from 
2018 to 2021, which can proxy the general interest in AI 
within the U.S. policymaking space. The total number of 
policy papers has tripled since 2018, peaking in 2020 with 
273, and decreasing slightly in 2021, with 210.
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Figure 5.1.11

3 The complete list of organizations the Index followed can be found in the Appendix.
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By Topic
In 2021, the leading primary topics were Privacy, Safety, 
and Security; Innovation and Technology; and Ethics 
(Figure 5.1.12). Certain topics, such as government and 
public administration, education and skills, as well as 
democracy, did not feature prominently as primary 

topics, but they were reported on more frequently 
as secondary topics. Among the AI topics to receive 
comparatively little attention from tracked organizations 
are those that relate to energy and the environment, 
humanities, physical sciences, and social and behavioral 
sciences.
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FEDERAL BUDGE T FOR NONDEFENSE  
AI  R&D 
In December 2021, the National Science and Technology Council 
published a report on the public-sector AI R&D budget across 
departments and agencies participating in the Networking and 
Information Technology Research and Development (NITRD) 
program and the National Artificial Intelligence Initiative. The report 
does not include information on classified AI R&D investment by the 
defense and intelligence agencies.

In fiscal year (FY) 2021, nondefense U.S. government agencies 
allocated a total of $1.53 billion to AI R&D spending, approximately 
2.7 times what was spent in FY 2018 (Figure 5.2.1). This figure 
is projected to rise 8.8% for FY 2022, with a total of $1.67 billion 
requested.4 The increasing amount spent on AI R&D by nondefense 
departments indicates the U.S. government’s continued strong 
interest in public sector funding for AI research and development 
spanning a wide range of federal agencies.

5.2 U.S. PUBLIC INVESTMENT IN AI 

4 See NITRD website for details on AI R&D investment FY 2018-22 with the breakdown of core AI vs AI crosscut. Note that AI crosscutting budget data is not available for FY 2018.

Artificial Intelligence
Index Report 2022

This section examines the public AI investment in the United States, based on data from the U.S. government and Bloomberg Government.
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Figure 5.2.1

The increasing amount 
spent on AI R&D by 
nondefense departments 
indicates the U.S. 
government’s continued 
strong interest in 
public sector funding 
for AI research and 
development spanning 
a wide range of federal 
agencies.

https://www.whitehouse.gov/wp-content/uploads/2021/12/FY2022-NITRD-NAIIO-Supplement.pdf
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U.S. DEPARTMENT OF DEFENSE 
BUDGE T REQUEST
Spending on AI by the U.S. Department of Defense (DOD) 
can be proxied by looking at the publicly available 
requests made by the DOD for research, development, 
test, and evaluation (RDT&E) relating to AI. In FY 2021, 

DOD allocated $9.26 billion across 500 AI R&D programs 
(Figure 5.2.2), a 6.68% increase from the $8.68 billion 
spent in 2020. For FY 2022, the department has requested 
$10 billion so far, which is likely to grow once additional 
requests and congressional appropriations are taken into 
account.

Important data caveat: This chart is indicative of one 
of the challenges of quantifying public AI spending. 
Bloomberg Government’s analysis that searches AI-
relevant keywords in DOD budgets shows that the 
department is requesting $10.0 billion for AI-specific R&D 
in FY 2022. However, DOD’s own measurement produces 
a smaller number of $874 million. The discrepancy 

may result from the difference in defining AI-related 
budget items. For example, a research project that uses 
AI for cyber defense may count human, hardware, and 
operations-related expenditures within the AI-related 
budget request, though the AI software component will 
be much smaller.
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https://www.defense.gov/News/Releases/Release/Article/2638711/the-department-of-defense-releases-the-presidents-fiscal-year-2022-defense-budg/
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DOD Top Five Highest-Funded Programs
This section highlight offers a more qualitative look at some of the AI-related research projects the 
DOD prioritizes. Table 5.2.1 presents the five DOD-related AI programs that received the greatest 
funding in 2021. In the past year, the DOD was interested in deploying AI for a number of purposes, 
from geospatial monitoring to reducing the threat posed by weapons of mass destruction. 

Program Name Department Funds Received 
(in millions) Purpose

1 Rapid Capability 
Development and Maturation

Army 257 Fund the development, engineering, acquisition, 
and operation of various AI-related technological 
prototypes that could be used for military purposes. 

2 Counter Weapons of 
Mass Destruction Advanced 
Technology Development

Defense Threat 
Reduction 
Agency

254 Develop technologies that could “deny, defeat and 
disrupt” weapons of mass destruction (WMD).

3 Algorithmic Warfare  
Cross-Functional Teams –
Software Pilot Program 

Office of the 
Secretary of 
Defense

230 Accelerate the integration of AI technologies in DOD 
systems to “improve warfighting speed and lethality.”

4 Joint Artificial Intelligence 
Center

Defense 
Information 
Systems 
Agency

137 Develop, test, prototype, and demonstrate various AI 
and machine learning capabilities with the intention 
of integrating these capabilities across numerous 
domains which include “supply chain, personal 
recovery, infrastructure assessment, geospatial 
monitoring during disaster and cyber sense making.”

5 High Performance 
Computing Modernization 
Program

Army 96 Investigate, demonstrate, and mature both general 
and special-purpose supercomputing environments 
that are used to satisfy wide-ranging DOD priorities.

Table 5.2.1

5.2 U.S. Public Investment in AI
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DOD AI R&D Spending by Department
DOD spending on AI R&D can also be broken down on 
a subdepartmental level, which reveals how individual 
defense agencies—the Army and the Navy, for instance—
compare in their AI spending (Figure 5.2.3). The U.S. 
Navy was the top-spending DOD agency in FY 2021 and 

is poised to maintain that position in 2022. They have 
requested a total of $1.86 billion in FY 2022 for AI-related 
projects, followed by the Army ($1.77 billion), the Office 
of the Secretary of Defense ($1.1 billion) and the Air Force 
($883 million).

FY20 (ENACTED) FY21 (ENACTED) FY22 (REQUESTED)

0

2

4

6

8

10

B
ud

ge
t 

(in
 b

ill
io

ns
 o

f U
.S

. D
ol

la
rs

)

1.00

1.64

1.86
1.93

1.63

1.541.92

1.52

1.75

1.57

1.72

1.77

1.19

1.16

1.18

1.13
1.12

1.71

U.S. DOD BUDGET for AI-SPECIFIC RESEARCH, DEVELOPMENT, TEST and EVALUATION (RDT&E) by
DEPARTMENT, FY 2020–22
Source: Bloomberg Government, 2021 | Chart: 2022 AI Index Report

Air Force Army DARPA DISA Navy OSD Other

Figure 5.2.3

5.2 U.S. Public Investment in AI
CHAPTER 5: AI POLICY AND GOVERNANCE



192Chapter 5 PreviewTable of Contents

Artificial Intelligence
Index Report 2022

U.S. GOVERNMENT AI-RELATED 
CONTRACT SPENDING
Public investment in AI can also be measured by federal 
government spending on AI-related contracts. U.S. 
government agencies often award contracts to private 
companies for the supply of various goods and services 
that typically occupy the largest share of an agency’s 
budget. Bloomberg Government built a model to classify 
whether a U.S. government contract was AI-related by 
adding up all contracting transactions that contain a set 

of more than 100 AI-specific keywords in their titles or 
descriptions.5

Total Contract Spending
In 2021, federal departments and agencies spent a total of 
$1.79 billion on AI-related contracts. Although this amount 
is nearly double what was spent on AI-related contracts in 
2018 (roughly $920 million), it represents a slight decrease 
from the amount spent on AI-related contracts in 2020, 
which peaked at $1.97 billion (Figure 5.2.4).
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5 Note that contractors may add a number of keywords into their applications during the procurement process, so some of the projects included may have a relatively small AI component relative to 
other parts of technology.
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Contract Spending by Department and Agency
Figures 5.2.5 and 5.2.6 report AI-related contract spending 
by the top 10 federal agencies in 2021 and from 2000 to 
2021, respectively. The DOD outspent the rest of the U.S. 
government on both charts by a significant margin. In 
2021, it spent $1.14 billion on AI-related contracts, roughly 
five times what was spent by the next highest department, 
the Department of Health and Human Services ($234 
million). 

Aggregate spending on AI contracts in the last four years 
tells a similar story. Since 2018, the DOD has spent $5.20 
billion on AI contracts, approximately seven times the next 
highest spender, NASA ($1.41 billion). In fact, since 2018, 
the DOD has spent twice as much on AI-related contracts 
as all other government agencies combined. Following the 
DOD and NASA are the Department of Health and Human 
Services ($700 million), the Department of Homeland 
Security ($362 million), and Department of the Treasury 
($156 million). 
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Largest Contract for Five Top-Spending  
Departments in 2021
To paint a better picture of how different U.S. government departments use AI, Table 5.2.2 shows the 
most expensive AI-related contract that the five highest AI-related-spending departments signed in 
2021. Last year, the U.S. government invested in AI to build autonomous vehicle prototypes, develop an 
AI imaging system that could assist with burn classification, and create robots capable of higher-level 
lunar navigation.

Contract Name Department Amount 
(in millions) Purpose

Prototype Services in the Objective 
Areas of Automotive Cybersecurity, 
Vehicle Safety Technologies, Vehicle 
Light Weighting, Autonomous Vehicles 
and Intelligent Systems, Connected 
Vehicles, and Advanced Energy Storage 
Technologies

DOD 70 To acquire prototypes in the domain of 
automotive cybersecurity, vehicle safety 
technologies, and autonomous vehicles and 
intelligent systems.

Biomedical Advanced Research and 
Development Authority (BARDA)

HHS 20 To develop optical imaging devices and 
machine learning algorithms to assist 
in classifying and healing wounds and 
conventional burns. 

Commercial Lunar Payload Services NASA 14 To develop lunar robots capable of navigating 
the moon’s south pole to acquire lunar 
resources and engage in lunar-based scientific 
activities. 

SBIR-Autonomous Surveillance  
Towers-Delivery Order

DHS 37 To construct towers capable of autonomous 
surveillance. 

Schedule 70: Information Technology DOC 13 To develop a prototype using AI technology 
that can improve patent search. 

Table 5.2.2

5.2 U.S. Public Investment in AI
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APPENDIX

CENTER FOR SECURIT Y AND 
EMERGING TECHNOLOGY, 
GEORGE TOWN UNIVERSIT Y
Prepared by Sara Abdulla and James Dunham

The Center for Security and Emerging Technology (CSET) 
is a policy research organization within Georgetown 
University’s Walsh School of Foreign Service that produces 
data-driven research at the intersection of security and 
technology, providing nonpartisan analysis to the policy 
community.

Publications from CSET Merged Corpus of 
Scholarly Literature
Source
CSET’s merged corpus of scholarly literature combines 
distinct publications from Digital Science’s Dimensions, 
Clarivate’s Web of Science, Microsoft Academic Graph, 
China National Knowledge Infrastructure, arXiv, and 
Papers With Code.1 

Methodology
To create the merged corpus, CSET deduplicated across 
the listed sources using publication metadata, and then 
combined the metadata for linked publications. To 
identify AI publications, CSET used an English-language 
subset of this corpus: publications since 2010 that appear 
AI-relevant.2 CSET researchers developed a classifier 
for identifying AI-related publications by leveraging the 
arXiv repository, where authors and editors tag papers by 
subject.  

To provide a publication’s field of study, CSET matches 
each publication in the analytic corpus with predictions 
from Microsoft Academic Graph (MAG)’s field-of-study 
model, which yields hierarchical labels describing the 

published research field(s) of study and corresponding 
scores.3 CSET researchers identified the most common 
fields of study in their corpus of AI-relevant publications 
since 2010 and recorded publications in all other fields as 
“Other AI.” English-language AI-relevant publications were 
then tallied by their top-scoring field and publication year. 

CSET also provided year-by-year citations for AI-relevant 
work associated with each country. A publication is 
associated with a country if it has at least one author whose 
organizational affiliation(s) is located in that country. 
Citation counts aren’t available for all publications; those 
without counts weren’t included in the citation analysis. 
Over 70% of English-language AI papers published between 
2010 and 2020 have citation data available.

CSET counted cross-country collaborations as distinct 
pairs of countries across authors for each publication. 
Collaborations are only counted once: For example, if a 
publication has two authors from the United States and 
two authors from China, it is counted as a single United 
States-China collaboration. 

Additionally, publication counts by year and by 
publication type (e.g., academic journal articles, 
conference papers) were provided where available. 
These publication types were disaggregated by affiliation 
country as described above.

CSET also provided publication affiliation sector(s) 
where, as in the country attribution analysis, sectors were 
associated with publications through authors’ affiliations. 
Not all affiliations were characterized in terms of sectors; 
CSET researchers relied primarily on GRID from Digital 
Science for this purpose, and not all organizations can 
be found in or linked to GRID.4 Where the affiliation 

CHAPTER 1: RESEARCH & DEVELOPMENT

1  All CNKI content is furnished for CSET by East View Information Services, Minneapolis, MN, USA.
2  For more information, see James Dunham, Jennifer Melot, and Dewey Murdick, “Identifying the Development and Application of Artificial Intelligence in Scientific Text,” arXiv [cs.DL], May 28, 2020, 
https://arxiv.org/abs/2002.07143.
3  These scores are based on cosine similarities between field-of-study and paper embeddings. See Zhihong Shen, Hao Ma, and Kuansan Wang, “A Web-Scale System for Scientific Knowledge 
Exploration,” arXiv [cs.CL], May 30, 2018, https://arxiv.org/abs/1805.12216. 
4 See https://www.grid.ac/ for more information about the GRID dataset from Digital Science.

https://arxiv.org/abs/2002.07143
https://arxiv.org/abs/1805.12216
https://www.grid.ac/
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sector is available, papers were counted toward these 
sectors, by year. Cross-sector collaborations on academic 
publications were calculated using the same method as in 
the cross-country collaborations analysis.

Patents from CSET’s AI Patents Dataset
Source
CSET’s AI patents dataset was developed by CSET 
and 1790 Analytics. It includes patents relevant to the 
development and application of AI, as indicated by CPC/
IPC codes and keywords. 

Methodology
In this analysis, patents were grouped by year and 
country, and then counted at the “patent family” 
level.5 CSET extracted year values from the most recent 
publication date within a family. This method has the 
advantage of capturing updates within a patent family 
(such as amendments).

The country of origin for a patent is derived from the first 
country in which a patent was filed.6 

GITHUB STARS
Source
GitHub: star-history (available at star history website) was 
used to retrieve the data. 

Methodology
The visual in the report shows the number of stars for 
various GitHub repositories over time. The repositories 
include the following:
apachecn/ailearning, apache/incubator-mxnet, Avik-
Jain/100-Days-Of-ML-Code, aymericdamien/TensorFlow-
Examples, BVLC/cafe, cafe2/cafe2, CorentinJ/Real-Time-
Voice-Cloning, deepfakes / faceswap, dmlc/mxnet, 
exacity/deeplearningbook-chinese, fchollet/keras, 
floodsung/Deep-Learning-Papers-Reading-Roadmap, 

iperov/DeepFaceLab, Microsoft/CNTK, opencv/opencv, 
pytorch/pytorch, scikit-learn/scikit-learn, scutan90/
DeepLearning-500-questions, tensorflow/tensorflow, 
Theano/Theano, Torch/Torch7.

Nuance 
The GitHub Archive currently does not provide a way 
to count when users remove a star from a repository. 
Therefore, the reported data slightly overestimates the 
number of stars. A comparison with the actual number 
of stars for the repositories on GitHub reveals that the 
numbers are fairly close and that the trends remain 
unchanged.  

5 Patents are analyzed at the “patent family” level rather than “patent document” level because patent families are a collective of patent documents all associated with a single invention and/or 
innovation by the same inventors/assignees. Thus, counting at the “patent family” level mitigates artificial number inflation when there are multiple patent documents in a patent family or if a patent is 
filed in multiple jurisdictions.
6 For more details on CSET’s approach and experimentation for assigning country values, see footnote 26 in “Patents and Artificial Intelligence: A Primer,” by Dewey Murdick and Patrick Thomas. (Center 
for Security and Emerging Technology, September 2020), https://doi.org/10.51593/20200038.

https://github.com/timqian/star-history
https://star-history.com/
https://doi.org/10.51593/20200038
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ImageNet
Data on ImageNet accuracy was retrieved through a 
detailed arXiv literature review cross-referenced by 
technical progress reported on Papers with Code. The 
reported dates correspond to the year during which 
a paper was first published to arXiv, and the reported 
results (top-1 or top-5 accuracy) correspond to the result 
reported in the most recent version of each paper.  
The estimate of human-level performance is from 
Russakovsky et al., 2015. Learn more about the LSVRC 
ImageNet competition and the ImageNet data set.

ImageNet: Top-1 Accuracy
To highlight progress on top-1 accuracy without the use of 
extra training data, scores were taken from the following 
papers:    
Adversarial Examples Improve Image Recognition
Billion-Scale Semi-Supervised Learning for Image 
Classification
Dual Path Networks
Densely Connected Convolutional Networks
EfficientNet: Rethinking Model Scaling for Convolutional 
Neural Networks
Fixing the Train-Test Resolution Discrepancy: 
FixEfficientNet
ImageNet Classification with Deep Convolutional Neural 
Networks
Masked Autoencoders Are Scalable Vision Learners
  
To highlight progress on top-1 accuracy with the use of 
extra training data, scores were taken from the following 
papers: 
Big Transfer (BiT): General Visual Representation Learning
CoAtNet: Marrying Convolution and Attention for All Data 
Sizes
EfficientNet: Rethinking Model Scaling for Convolutional 
Neural Networks
Self-Training with Noisy Student Improves ImageNet 
Classification 
Sharpness-Aware Minimization for Efficiently Improving 

Generalization
Xception: Deep Learning with Depthwise Separable 
Convolutions

ImageNet: Top-5 Accuracy
To highlight progress on top-5 accuracy without the use of 
extra training data, scores were taken from the following 
papers:     
Adversarial Examples Improve Image Recognition
EfficientNet: Rethinking Model Scaling for Convolutional 
Neural Networks
Exploring the Limits of Weakly Supervised Pretraining
Fixing the Train-Test Resolution Discrepancy: 
FixEfficientNet
GPipe: Efficient Training of Giant Neural Networks Using 
Pipeline Parallelism
High-Performance Large-Scale Image Recognition Without 
Normalization
ImageNet Classification with Deep Convolutional Neural 
Networks
Learning Transferable Architectures for Scalable Image 
Recognition
Squeeze-and-Excitation Networks

To highlight progress on top-5 accuracy with the use of 
extra training data, scores were taken from the following 
papers: 
Big Transfer (BiT): General Visual Representation Learning
Deep Residual Learning for Image Recognition
EfficientNet: Rethinking Model Scaling for Convolutional 
Neural Networks
Florence: A New Foundation Model for Computer Vision
Self-Training with Noisy Student Improves ImageNet 
Classification
Xception: Deep Learning with Depthwise Separable 
Convolutions

STL-10
Data on STL-10 FID scores was retrieved through a 
detailed arXiv literature review cross-referenced by 
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https://paperswithcode.com/sota/image-classification-on-imagenet
https://image-net.org/
https://arxiv.org/pdf/1911.09665.pdf
https://arxiv.org/pdf/1905.00546.pdf
https://arxiv.org/pdf/1905.00546.pdf
https://arxiv.org/pdf/1707.01629.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/2003.08237.pdf
https://arxiv.org/pdf/2003.08237.pdf
https://arxiv.org/pdf/2111.06377.pdf
https://arxiv.org/pdf/1912.11370.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/2010.01412.pdf
https://arxiv.org/pdf/2010.01412.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/pdf/1911.09665.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1805.00932v1.pdf
https://arxiv.org/pdf/1805.00932v1.pdf
https://arxiv.org/pdf/2003.08237.pdf
https://arxiv.org/pdf/2003.08237.pdf
https://arxiv.org/pdf/1811.06965.pdf
https://arxiv.org/pdf/1811.06965.pdf
https://arxiv.org/pdf/2102.06171.pdf
https://arxiv.org/pdf/2102.06171.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/pdf/1707.07012v4.pdf
https://arxiv.org/pdf/1707.07012v4.pdf
https://arxiv.org/pdf/1709.01507.pdf
https://arxiv.org/pdf/1912.11370.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1911.04252.pdf
https://arxiv.org/pdf/1911.04252.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/pdf/1610.02357.pdf
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technical progress reported on Papers with Code. The 
reported dates correspond to the year during which 
a paper was first published to arXiv, and the reported 
results (FID score) correspond to the result reported in the 
most recent version of each paper. Details on the STL-10 
benchmark can be found in the STL-10 paper. 

To highlight progress on STL-10, scores were taken from 
the following papers:
DEGAS: Differentiable Efficient Generator Search 
Dist-GAN: An Improved GAN Using Distance Constraints 
Off-Policy Reinforcement Learning for Efficient and 
Effective GAN Architecture 
Search Score Matching Model for Unbounded Data Score

CIFAR-10
Data on CIFAR-10 FID scores was retrieved through a 
detailed arXiv literature review cross-referenced by 
technical progress reported on Papers with Code. The 
reported dates correspond to the year during which 
a paper was first published to arXiv, and the reported 
results (FID score) correspond to the result reported in the 
most recent version of each paper. Details on the CIFAR-10 
benchmark can be found in the CIFAR-10 paper. 

To highlight progress on CIFAR-10, scores were taken from 
the following papers:
AutoGAN: Neural Architecture Search for Generative 
Adversarial Networks 
Denoising Diffusion Probabilistic Models 
Improved Training of Wasserstein GANs 
Large Scale GAN Training for High Fidelity Natural Image 
Synthesis 
Score-Based Generative Modeling in Latent Space

FaceForensics++ 
Data on FaceForensics++ accuracy was retrieved through 
a detailed arXiv literature review. The reported dates 
correspond to the year during which a paper was first 
published to arXiv or a method was introduced. With 
FaceForensics, recent researchers have tested previously 
existing deepfake detection methodologies. The year 

in which a method was introduced, even if it was 
subsequently tested, is the year in which it is included in 
the report. The reported results (accuracy) correspond 
to the result reported in the most recent version of each 
paper. Details on the FaceForensics++ benchmark can be 
found in the FaceForensics++ paper. 

To highlight progress on FaceForensics++, scores were 
taken from the following papers:
A Deep Learning Approach to Universal Image 
Manipulation Detection Using a New Convolutional Layer
Detection of Deepfake Videos Using Long Distance 
Attention
FakeCatcher: Detection of Synthetic Portrait Videos Using 
Biological Signals
FaceForensics++: Learning to Detect Manipulated Facial 
Images 
Learning Spatiotemporal Features with 3D Convolutional 
Networks
Recasting Residual-Based Local Descriptors as 
Convolutional Neural Networks
Rich Models for Steganalysis of Digital Images
Thinking in Frequency: Face Forgery Detection by Mining 
Frequency-Aware Clues 
Xception: Deep Learning with Depthwise Separable 
Convolutions

Celeb-DF
Data on Celeb-DF AUC was retrieved through a detailed 
arXiv literature review. The reported dates correspond 
to the year during which a paper was first published to 
arXiv or a method was introduced. With Celeb-DF, recent 
researchers have tested previously existing deepfake 
detection methodologies. The year in which a method was 
introduced, even if it was subsequently tested, is the year 
in which it is included in the report. The reported results 
(AUC) correspond to the result reported in the most recent 
version of each paper. Details on the Celeb-DF benchmark 
can be found in the Celeb-DF paper.

To highlight progress on Celeb-DF, scores were taken from 
the following papers:
Exposing DeepFake Videos by Detecting Face Warping 

https://paperswithcode.com/sota/image-generation-on-stl-10
http://proceedings.mlr.press/v15/coates11a/coates11a.pdf
https://arxiv.org/pdf/1912.00606.pdf
https://arxiv.org/pdf/1803.08887.pdf
https://arxiv.org/pdf/2007.09180.pdf
https://arxiv.org/pdf/2007.09180.pdf
https://paperswithcode.com/sota/image-generation-on-cifar-10
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/pdf/1908.03835.pdf
https://arxiv.org/pdf/1908.03835.pdf
https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/abs/2106.05931
https://arxiv.org/pdf/1901.08971.pdf
https://misl.ece.drexel.edu/wp-content/uploads/2017/07/Bayar_IHMMSec_2016.pdf
https://misl.ece.drexel.edu/wp-content/uploads/2017/07/Bayar_IHMMSec_2016.pdf
https://arxiv.org/pdf/2106.12832v1.pdf
https://arxiv.org/pdf/2106.12832v1.pdf
https://arxiv.org/pdf/2106.12832v1.pdf
https://arxiv.org/pdf/2106.12832v1.pdf
https://arxiv.org/abs/1901.02212
https://arxiv.org/abs/1901.02212
https://arxiv.org/pdf/1901.08971.pdf
https://arxiv.org/pdf/1901.08971.pdf
https://ieeexplore.ieee.org/document/7410867
https://ieeexplore.ieee.org/document/7410867
https://in.booksc.me/book/66925544/c8ff18
https://in.booksc.me/book/66925544/c8ff18
https://ieeexplore.ieee.org/document/6197267
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/1486_ECCV_2020_paper.php
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/1486_ECCV_2020_paper.php
https://ieeexplore.ieee.org/document/8099678
https://ieeexplore.ieee.org/document/8099678
https://ieeexplore.ieee.org/document/8099678
https://ieeexplore.ieee.org/document/8099678
https://arxiv.org/pdf/1909.12962.pdf
https://arxiv.org/pdf/1811.00656.pdf
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Artifacts 
FaceForensics++: Learning to Detect Manipulated Facial 
Images 
Face X-Ray for More General Face Forgery Detection 
Spatial-Phase Shallow Learning: Rethinking Face Forgery 
Detection in Frequency Domain

Leeds Sports Poses
Data on Leeds Sports Poses percentage of correct 
keypoints (PCK) was retrieved through a detailed 
arXiv literature review cross-referenced by technical 
progress reported on Papers with Code. The reported 
dates correspond to the year during which a paper was 
first published to arXiv, and the reported results (PCK) 
correspond to the result reported in the most recent 
version of each paper. Details on the Leeds Sports Poses 
benchmark can be found in the Leeds Sports Poses paper.

To highlight progress on Leeds Sports Poses, scores were 
taken from the following papers:
Articulated Pose Estimation by a Graphical Model with 
Image Dependent Pairwise Relations 
Human Pose Estimation via Convolutional Part Heatmap 
Regression 
Jointly Optimize Data Augmentation and Network 
Training: Adversarial Data Augmentation in Human Pose 
Estimation 
Knowledge-Guided Deep Fractal Neural Networks for 
Human Pose Estimation 
OmniPose: A Multi-Scale Framework for Multi-Person Pose 
Estimation 
Toward Fast and Accurate Human Pose Estimation via 
Soft-Gated Skip Connections 

Human 3.6M
Data on Human3.6M average mean per joint position error 
was retrieved through a detailed arXiv literature review 
cross-referenced by technical progress reported on Papers 
with Code. The reported dates correspond to the year 
during which a paper was first published to arXiv, and the 
reported results (MPJPE) correspond to the result reported 
in the most recent version of each paper. Details on the 

Human3.6M benchmark can be found in the Human3.6M 
paper.

To highlight progress on Human3.6M without the use of 
extra training data, scores were taken from the following 
papers:
3D Human Pose Estimation in Video with Temporal 
Convolutions and Semi-Supervised Training
Conditional Directed Graph Convolution for 3D Human 
Pose Estimation
Cross View Fusion for 3D Human Pose Estimation
Epipolar Transformers
Human3.6M: Large Scale Datasets and Predictive Methods 
for 3D Human Sensing in Natural Environments
Learning 3D Human Pose from Structure and Motion
Robust Estimation of 3D Human Poses from a Single 
Image

To highlight progress on Human3.6M with the use of 
extra training data, scores were taken from the following 
papers:
Epipolar Transformers
Learnable Triangulation of Human Pose
TesseTrack: End-to-End Learnable Multi-Person 
Articulated 3D Pose Tracking

Cityscapes Challenge, Pixel-Level Semantic 
Labeling Task
Data on the Cityscapes challenge, pixel-level semantic 
labeling task mean IoU was taken from the Cityscapes 
dataset, more specifically their pixel-level semantic 
labeling leaderboard. More details about the Cityscapes 
dataset and other corresponding semantic segmentation 
challenges can be accessed at the Cityscapes dataset 
webpage.

CVC-ClinicDB and Kvasir-SEG
Data on CVC-ClinicDB and Kvasir-SEG mean dice was 
retrieved through a detailed arXiv literature review cross-
referenced by technical progress reported on Papers 
with Code (CVC-ClinicDB and Kvasir-SEG). The reported 
dates correspond to the year during which a paper was 
first published to arXiv, and the reported results (mean 
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https://arxiv.org/pdf/1811.00656.pdf
https://arxiv.org/abs/1901.08971
https://arxiv.org/abs/1901.08971
https://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Face_X-Ray_for_More_General_Face_Forgery_Detection_CVPR_2020_paper.pdf
https://arxiv.org/pdf/2103.01856.pdf
https://arxiv.org/pdf/2103.01856.pdf
https://paperswithcode.com/sota/pose-estimation-on-leeds-sports-poses
http://www.bmva.org/bmvc/2010/conference/paper12/index.html
https://arxiv.org/pdf/1407.3399v2.pdf
https://arxiv.org/pdf/1407.3399v2.pdf
https://arxiv.org/pdf/1609.01743v1.pdf
https://arxiv.org/pdf/1609.01743v1.pdf
https://arxiv.org/pdf/1609.01743v1.pdf
https://arxiv.org/pdf/1609.01743v1.pdf
https://arxiv.org/pdf/1609.01743v1.pdf
https://arxiv.org/pdf/1609.01743v1.pdf
https://arxiv.org/pdf/1609.01743v1.pdf
https://arxiv.org/pdf/2103.10180v1.pdf
https://arxiv.org/pdf/2103.10180v1.pdf
https://arxiv.org/pdf/2002.11098v1.pdf
https://arxiv.org/pdf/2002.11098v1.pdf
https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m
https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m
http://vision.imar.ro/human3.6m/pami-h36m.pdf
http://vision.imar.ro/human3.6m/pami-h36m.pdf
https://arxiv.org/pdf/1811.11742v2.pdf
https://arxiv.org/pdf/1811.11742v2.pdf
https://arxiv.org/abs/2107.07797v2
https://arxiv.org/abs/2107.07797v2
https://arxiv.org/pdf/1909.01203v1.pdf
https://arxiv.org/pdf/2005.04551v1.pdf
https://ieeexplore.ieee.org/document/6682899
https://ieeexplore.ieee.org/document/6682899
https://arxiv.org/pdf/1711.09250v2.pdf
https://arxiv.org/pdf/1406.2282v1.pdf
https://arxiv.org/pdf/1406.2282v1.pdf
https://arxiv.org/pdf/1905.05754v1.pdf
http://www.cs.cmu.edu/~ILIM/projects/IM/TesseTrack/
http://www.cs.cmu.edu/~ILIM/projects/IM/TesseTrack/
https://www.cityscapes-dataset.com/benchmarks/#pixel-level-results
https://www.cityscapes-dataset.com/benchmarks/#pixel-level-results
https://www.cityscapes-dataset.com/dataset-overview/
https://www.cityscapes-dataset.com/dataset-overview/
https://paperswithcode.com/sota/medical-image-segmentation-on-cvc-clinicdb
https://paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg
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dice) correspond to the result reported in the most 
recent version of each paper. Details on the CVC-ClinicDB 
benchmark can be found in the CVC-ClinicDB database 
page. Details on the Kvasir-SEG benchmark can be found 
in the Kvasir-SEG paper.

To highlight progress on CVC-ClinicDB, scores were taken 
from the following papers:
DoubleU-Net: A Deep Convolutional Neural Network for 
Medical Image Segmentation
Encoder-Decoder with Atrous Separable Convolution for 
Semantic Image Segmentation
MSRF-Net: A Multi-Scale Residual Fusion Network for 
Biomedical Image Segmentation
ResUNet++: An Advanced Architecture for Medical Image 
Segmentation
U-Net: Convolutional Networks for Biomedical Image 
Segmentation

To highlight progress on Kvasir-SEG, scores were taken 
from the following papers:
Encoder-Decoder with Atrous Separable Convolution for 
Semantic Image Segmentation
MSRF-Net: A Multi-Scale Residual Fusion Network for 
Biomedical Image Segmentation
PraNet: Parallel Reverse Attention Network for Polyp 
Segmentation
U-Net: Convolutional Networks for Biomedical Image 
Segmentation

National Institute of Standards and Technology 
(NIST) Face Recognition Vendor Test (FRVT) 
and NIST FRVT Face Mask Effects
Data on NIST FRVT 1:1 verification accuracy by dataset 
was obtained from the FRVT 1:1 verification leaderboard. 
Data on NIST FRVT face mask effects was obtained from 
the FRVT face mask effects leaderboard. The face mask 
effects leaderboard contains results of the testing of 
319 face recognition algorithms that were submitted to 
FRVT prior to and post mid-March 2020, when the COVID 
pandemic began. 

Visual Question Answering (VQA)
Data on VQA was taken from recent iterations of the VQA 
challenge. To learn more about the VQA challenge in 
general, please consult the following link. To learn more 
about the 2021 iteration of the VQA challenge, please 
consult the following link. More specifically, the Index 
makes use of data from the following iterations of the VQA 
challenge:
VQA Challenge 2016
VQA Challenge 2017
VQA Challenge 2018
VQA Challenge 2019
VQA Challenge 2020
VQA Challenge 2021

Kinetics-400, Kinetics-600, and Kinetics-700
Data on Kinetics-400, Kinetics-600, and Kinetics-700 was 
retrieved through a detailed arXiv literature review cross-
referenced by technical progress reported on Papers with 
Code (Kinetics-400, Kinetics-600, and Kinetics-700). The 
reported dates correspond to the year during which a 
paper was first published to arXiv, and the reported results 
(accuracy) correspond to the result reported in the most 
recent version of each paper. Details on the Kinetics-400 
benchmark can be found in the Kinetics-400 paper. Details 
on the Kinetics-600 benchmark can be found in the 
Kinetics-600 paper. Details on the Kinetics-700 benchmark 
can be found in the Kinetics-700 paper.

To highlight progress on Kinetics-400, scores were taken 
from the following papers:
Co-Training Transformer with Videos and Images Improves 
Action Recognition
Large-Scale Weakly-Supervised Pre-training for Video 
Action Recognition
Multiview Transformers for Video Recognition
Non-Local Neural Networks
Omni-Sourced Webly-Supervised Learning for Video 
Recognition
SlowFast Networks for Video Recognition
Temporal Segment Networks: Towards Good Practices for 
Deep Action Recognition
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https://polyp.grand-challenge.org/CVCClinicDB/
https://polyp.grand-challenge.org/CVCClinicDB/
https://arxiv.org/pdf/1911.07069v1.pdf
https://arxiv.org/pdf/2006.04868v2.pdf
https://arxiv.org/pdf/2006.04868v2.pdf
https://arxiv.org/pdf/1505.04597v1.pdf
https://arxiv.org/pdf/1505.04597v1.pdf
https://arxiv.org/pdf/2105.07451v1.pdf
https://arxiv.org/pdf/2105.07451v1.pdf
https://arxiv.org/pdf/1911.07067.pdf
https://arxiv.org/pdf/1911.07067.pdf
https://arxiv.org/pdf/1505.04597v1.pdf
https://arxiv.org/pdf/1505.04597v1.pdf
https://arxiv.org/abs/1802.02611
https://arxiv.org/abs/1802.02611
https://arxiv.org/pdf/2105.07451v1.pdf
https://arxiv.org/pdf/2105.07451v1.pdf
https://arxiv.org/pdf/2006.11392v4.pdf
https://arxiv.org/pdf/2006.11392v4.pdf
https://arxiv.org/pdf/1505.04597v1.pdf
https://arxiv.org/pdf/1505.04597v1.pdf
https://pages.nist.gov/frvt/html/frvt11.html
https://pages.nist.gov/frvt/html/frvt_facemask.html
https://visualqa.org/index.html
https://visualqa.org/challenge.html
https://visualqa.org/vqa_v1_challenge.html
https://visualqa.org/roe_2017.html
https://visualqa.org/roe_2018.html
https://visualqa.org/roe_2019.html
https://visualqa.org/roe_2020.html
https://visualqa.org/roe.html
https://paperswithcode.com/sota/action-classification-on-kinetics-400
https://paperswithcode.com/sota/action-classification-on-kinetics-600
https://paperswithcode.com/sota/action-classification-on-kinetics-700
https://arxiv.org/pdf/1705.06950v1.pdf
https://arxiv.org/pdf/1808.01340v1.pdf
https://arxiv.org/pdf/1907.06987v1.pdf
https://arxiv.org/pdf/2112.07175v1.pdf
https://arxiv.org/pdf/2112.07175v1.pdf
https://arxiv.org/pdf/1905.00561v1.pdf
https://arxiv.org/pdf/1905.00561v1.pdf
https://arxiv.org/pdf/2201.04288v1.pdf
https://arxiv.org/pdf/1711.07971v3.pdf
https://arxiv.org/pdf/2003.13042v2.pdf
https://arxiv.org/pdf/2003.13042v2.pdf
https://arxiv.org/pdf/1812.03982v3.pdf
https://arxiv.org/pdf/1608.00859v1.pdf
https://arxiv.org/pdf/1608.00859v1.pdf
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To highlight progress on Kinetics-600, scores were taken 
from the following papers:
Masked Feature Prediction for Self-Supervised Visual Pre-
Training
Multiview Transformers for Video Recognition
Learning Spatio-Temporal Representation with Local and 
Global Diffusion
Rethinking Spatiotemporal Feature Learning: Speed-
Accuracy Trade-offs in Video Classification
SlowFast Networks for Video Recognition

To highlight progress on Kinetics-700, scores were taken 
from the following papers:
Learn to Cycle: Time-Consistent Feature Discovery for 
Action Recognition
Masked Feature Prediction for Self-Supervised Visual Pre-
Training
Multiview Transformers for Video Recognition

ActivityNet: Temporal Action Localization Task
In the challenge, there are three separate tasks, but 
they focus on the main problem of temporally localizing 
where activities happen in untrimmed videos from the 
ActivityNet benchmark. To source information on the 
state-of-the-art results for TALT, the Index did a detailed 
survey of arXiv papers in addition to reports of yearly 
ActivityNet challenge results. More specifically, the Index 
made use of the following sources of information:
TALT 2016
TALT 2017
TALT 2018
TALT 2019
TALT 2020
TALT 2021

Common Object in Context (COCO)
Data on COCO mean average precision (mAP50) was 
retrieved through a detailed arXiv literature review cross-
referenced by technical progress reported on Papers 
with Code. The reported dates correspond to the year 
during which a paper was first published to arXiv, and 
the reported results (mAP50) correspond to the result 
reported in the most recent version of each paper. Details 

on the COCO benchmark can be found in the COCO paper. 

To highlight progress on COCO without the use of extra 
training data, scores were taken from the following 
papers:
An Analysis of Scale Invariance in Object Detection – SNIP
Deformable ConvNets v2: More Deformable, Better Results
Dynamic Head: Unifying Object Detection Heads with 
Attentions
Inside-Outside Net: Detecting Objects in Context with Skip 
Pooling and Recurrent Neural Networks
Mish: A Self Regularized Non-Monotonic Activation 
Function
Scaled-YOLOv4: Scaling Cross Stage Partial Network

To highlight progress on COCO with the use of extra 
training data, scores were taken from the following 
papers: 
EfficientDet: Scalable and Efficient Object Detection
Grounded Language-Image Pre-Training

You Only Look Once (YOLO)
Data on YOLO mean average precision (mAP50) was 
retrieved through a detailed arXiv literature review 
and survey of GitHub repositories. The reported dates 
correspond to the year during which a paper was first 
published to arXiv or a method was introduced. More 
specifically, the Index made use of the following sources 
of information:
YOLO 2016
YOLO 2018
YOLO 2020
YOLO 2021

YOLO results for 2017 and 2019 were not included in the 
index as no state-of-the-art improvements in YOLO for 
those years were uncovered during the literature review 
and survey of GitHub repositories. 

Visual Commonsense Reasoning (VCR)
Technical progress for VCR is taken from the VCR 
leaderboard; the VCR leaderboard webpage further 
delineates the methodology behind the VCR challenge. 
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Human performance on VCR is taken from Zellers et al. (2018). Details on the VCR benchmark can be found in the VCR 
paper. 

SuperGLUE
The SuperGLUE benchmark data was pulled from the SuperGLUE leaderboard. Details about the SuperGLUE benchmark 
are in the SuperGLUE paper and SuperGLUE software toolkit. The tasks and evaluation metrics for SuperGLUE are:

NAME IDENTIFIER METRIC

Broad Coverage Diagnostics AX-b Matthew’s Carr

CommitmentBank CB Avg. F1/ Accuracy

Choice of Plausible Alternatives COPA Accuracy

Multi-Sentence Reading Comprehension MultiRC F1a/EM

Recognizing Textual Entailment RTE Accuracy

Words in Context WiC Accuracy

The Winograd Schema Challenge WSC Accuracy

BooIQ BooIQ Accuracy

Reading Comprehension with Commonsense Reasoning ReCoRD F1/ Accuracy

Winogender Schema Diagnostic AX-g Gender Parity/ Accuracy

SQuAD 1.1 and SQuAD 2.0
Data on SQuAD 1.1 performance was taken from Papers 
with Code. Data on SQuAD 2.0 performance was taken 
from the SQuAD 2.0 leaderboard. Details about the SQuAD 
1.1 benchmark are in the SQuAD 1.1 paper. Details about 
the SQuAD 2.0 benchmark are in the SQuAD 2.0 paper. 

Reading Comprehension Dataset Requiring 
Logical Reasoning (ReClor)
Data on ReClor performance was taken from the ReClor 
leaderboard. Details about the ReClor benchmark are in 
the ReClor paper. 

arXiv
Data on arXiv recall-oriented understudy for gisting 
evaluation (ROUGE-1) was retrieved through a detailed 
arXiv literature review cross-referenced by technical 
progress reported on Papers with Code. The reported 
dates correspond to the year during which a paper 

was first published to arXiv, and the reported results 
(ROUGE-1) correspond to the result reported in the most 
recent version of each paper. Details about the arXiv 
benchmark are in the arXiv dataset webpage.

To highlight progress on arXiv without the use of extra 
training data, scores were taken from the following 
papers:
A Discourse-Aware Attention Model for Abstractive 
Summarization of Long Documents
Extractive Summarization of Long Documents by 
Combining Global and Local Context
Get to the Point: Summarization with Pointer-Generator 
Networks
Systematically Exploring Redundancy Reduction in 
Summarizing Long Documents
Sparsifying Transformer Models with Trainable 
Representation Pooling
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To highlight progress on arXiv with the use of extra 
training data, scores were taken from the following 
papers:
Big Bird: Transformers for Longer Sequences
Hierarchical Learning for Generation with Long Source 
Sequences 
PEGASUS: Pre-Training with Extracted Gap-Sentences for 
Abstractive Summarization

PubMed
Data on PubMed recall-oriented understudy for gisting 
evaluation (ROUGE-1) was retrieved through a detailed 
arXiv literature review cross-referenced by technical 
progress reported on Papers with Code. The reported 
dates correspond to the year during which a paper 
was first published to arXiv, and the reported results 
(ROUGE-1) correspond to the result reported in the most 
recent version of each paper. Details about the PubMed 
benchmark are in the PubMed paper.

To highlight progress on PubMed without the use of 
extra training data, scores were taken from the following 
papers:
A Discourse-Aware Attention Model for Abstractive 
Summarization of Long Documents
Extractive Summarization of Long Documents by 
Combining Global and Local Context
Get to the Point: Summarization with Pointer-Generator 
Networks
Sparsifying Transformer Models with Trainable 
Representation Pooling

To highlight progress on PubMed with the use of extra 
training data, scores were taken from the following 
papers:
A Divide-and-Conquer Approach to the Summarization of 
Long Documents
Hierarchical Learning for Generation with Long Source 
Sequences
PEGASUS: Pre-Training with Extracted Gap-Sentences for 
Abstractive Summarization

Stanford Natural Language Inference (SNLI)
Data on Stanford Natural Language Inference (SNLI) 
accuracy was retrieved through a detailed arXiv literature 
review cross-referenced by technical progress reported on 
Papers with Code. The reported dates correspond to the 
year during which a paper was first published to arXiv, and 
the reported results (accuracy) correspond to the result 
reported in the most recent version of each paper. Details 
on the SNLI benchmark can be found in the SNLI paper.

To highlight progress on SNLI, scores were taken from the 
following papers:
Compare, Compress and Propagate: Enhancing Neural 
Architectures with Alignment Factorization for Natural 
Language Inference
Convolutional Neural Networks for Sentence Classification
Enhanced LSTM for Natural Language Inference
Entailment as Few-Shot Learner
Explicit Contextual Semantics for Text Comprehension
Semantics-Aware BERT for Language Understanding
Self-Explaining Structures Improve NLP Models

Abductive Natural Language Inference (aNLI)
Data on Abductive Natural Language Inference (aNLI) was 
sourced from the Allen Institute for AI’s aNLI leaderboard. 
Details on the aNLI benchmark can be found in the aNLI 
paper.

SemEval 2014 Task 4 Sub Task 2
Data on SemEval 2014 Task 4 Sub Task 2 accuracy was 
retrieved through a detailed arXiv literature review cross-
referenced by technical progress reported on Papers 
with Code. The reported dates correspond to the year 
during which a paper was first published to arXiv, and 
the reported results (accuracy) correspond to the result 
reported in the most recent version of each paper. Details 
on the SemEval benchmark can be found in the SemEval 
2014 paper. 

To highlight progress on SemEval, scores were taken from 
the following papers:
A Multi-Task Learning Model for Chinese-Oriented Aspect 
Polarity Classification and Aspect Term Extraction
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Aspect Level Sentiment Classification with Deep Memory 
Network
Back to Reality: Leveraging Pattern-Driven Modeling to 
Enable Affordable Sentiment Dependency Learning
Effective LSTMs for Target-Dependent Sentiment 
Classification
Hierarchical Attention Based Position-Aware Network for 
Aspect-Level Sentiment Analysis
Investigating Typed Syntactic Dependencies for Targeted 
Sentiment Classification Using Graph Attention Neural 
Network
Recurrent Attention Network on Memory for Aspect 
Sentiment Analysis

WMT2014, English-French and English-German
Data on WMT2014 English-French and English-German 
BLEU score was retrieved through a detailed arXiv 
literature review cross-referenced by technical progress 
reported on Papers with Code (English-French and 
English-German). The reported dates correspond to the 
year during which a paper was first published to arXiv, and 
the reported results (BLEU score) correspond to the result 
reported in the most recent version of each paper. Details 
about both the WMT2014 English-French and English-
German benchmarks can be found in the WMT2014 paper. 

To highlight progress on WMT2014 English-French without 
the use of extra training data, scores were taken from the 
following papers:
Addressing the Rare Word Problem in Neural Machine 
Translation
Google’s Neural Machine Translation System: Bridging the 
Gap Between Human and Machine Translation
MUSE: Parallel Multi-Scale Attention for Sequence to 
Sequence Learning
R-Drop: Regularized Dropout for Neural Networks
Scaling Neural Machine Translation
Understanding the Difficulty of Training Transformers
Weighted Transformer Network for Machine Translation

To highlight progress on WMT2014 English-French with 
the use of extra training data, scores were taken from the 

following papers:
Understanding Back-Translation at Scale
Very Deep Transformers for Neural Machine Translation

To highlight progress on WMT2014 English-German 
without the use of extra training data, scores were taken 
from the following papers:
BERT, mBERT, or BiBERT? A Study on Contextualized 
Embeddings for Neural Machine Translation
Effective Approaches to Attention-based Neural Machine 
Translation
Data Diversification: A Simple Strategy for Neural Machine 
Translation
Fast and Simple Mixture of Softmaxes with BPE and 
Hybrid-LightRNN for Language Generation
Google’s Neural Machine Translation System: Bridging the 
Gap Between Human and Machine Translation
Incorporating BERT into Neural Machine Translation
Weighted Transformer Network for Machine Translation

To highlight progress on WMT2014 English-German with 
the use of extra training data, scores were taken from the 
following papers:
Lessons on Parameter Sharing across Layers in 
Transformers
Understanding Back-Translation at Scale

Number of Commercially Available MT 
Systems
Details about the number of commercially available MT 
systems was sourced from Intento’s report The State of 
Machine Translation, 2021. Intento is a San Francisco-
based startup that analyzes commercially available MT 
services. 

LibriSpeech (Test-Clean and Other Dataset) 
Data on LibriSpeech (Test-Clean and Other) word error 
rate was retrieved through a detailed arXiv literature 
review cross-referenced by technical progress reported 
on Papers with Code (Test-Clean and Other). The reported 
dates correspond to the year during which a paper was 
first published to arXiv, and the reported results (word 
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error rate) correspond to the result reported in the most 
recent version of each paper. Details about both the 
LibriSpeech Test-Clean and Test-Other benchmarks can 
be found in the LibriSpeech paper.

To highlight progress on LibriSpeech Test-Clean without 
the use of extra training data, scores were taken from the 
following papers:
ASAPP-ASR: Multistream CNN and Self-Attentive SRU for 
SOTA Speech Recognition
Letter-Based Speech Recognition with Gated ConvNets
Neural Network Language Modeling with Letter-Based 
Features and Importance Sampling
SpeechStew: Simply Mix All Available Speech Recognition 
Data to Train One Large Neural Network
State-of-the-Art Speech Recognition Using Multi-Stream 
Self-Attention With Dilated 1D Convolutions

To highlight progress on LibriSpeech Test-Clean with the 
use of extra training data, scores were taken from the 
following papers:
Deep Speech 2: End-to-End Speech Recognition in English 
and Mandarin
End-to-End ASR: From Supervised to Semi-Supervised 
Learning with Modern Architectures
Pushing the Limits of Semi-Supervised Learning for 
Automatic Speech Recognition

To highlight progress on LibriSpeech Test-Other without 
the use of extra training data, scores were taken from the 
following papers:
Conformer: Convolution-Augmented Transformer for 
Speech Recognition
Neural Network Language Modeling with Letter-Based 
Features and Importance Sampling
SpeechStew: Simply Mix All Available Speech Recognition 
Data to Train One Large Neural Network
Transformer-Based Acoustic Modeling for Hybrid Speech 
Recognition

To highlight progress on LibriSpeech Test-Other with the 
use of extra training data, scores were taken from the 
following papers:
Deep Speech 2: End-to-End Speech Recognition in English 
and Mandarin
End-to-End ASR: From Supervised to Semi-Supervised 
Learning with Modern Architectures
Pushing the Limits of Semi-Supervised Learning for 
Automatic Speech Recognition
W2v-BERT: Combining Contrastive Learning and Masked 
Language Modeling for Self-Supervised Speech Pre-
Training

VoxCeleb
VoxCeleb is an audio-visual dataset consisting of short 
clips of human speech, extracted from interview videos 
uploaded to YouTube. VoxCeleb contains speech from 
7,000-plus speakers spanning a wide range of ethnicities, 
accents, professions, and ages—amounting to over a 
million utterances (face-tracks are captured “in the wild,” 
with background chatter, laughter, overlapping speech, 
pose variation, and different lighting conditions) recorded 
over a period of 2,000 hours (both audio and video). Each 
segment is at least three seconds long. The data contains 
an audio dataset based on celebrity voices, shorts, 
films, and conversational pieces (e.g., talk shows). The 
initial VoxCeleb 1 (100,000 utterances taken from 1,251 
celebrities on YouTube) was expanded to VoxCeleb 2 (1 
million utterances from 6,112 celebrities). 

For the sake of consistency, the AI Index reported scores 
on the initial VoxCeleb dataset. Specifically, the Index 
made use of the following sources of information:
The IDLAB VoxSRC-20 Submission: Large Margin Fine-
Tuning and Quality-Aware Score Calibration in DNN Based 
Speaker Verification
The SpeakIn System for VoxCeleb Speaker Recognition 
Challenge 2021
VoxCeleb: A Large-Scale Speaker Identification Dataset
VoxCeleb2: Deep Speaker Recognition
VoxCeleb: Large-Scale Speaker Verification in the Wild
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https://arxiv.org/pdf/2109.01989v1.pdf
https://arxiv.org/pdf/2109.01989v1.pdf
https://arxiv.org/abs/1706.08612v1
https://arxiv.org/abs/1806.05622
https://www.sciencedirect.com/science/article/pii/S0885230819302712
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MovieLens 20M
Data on MovieLens 20M normalized discounted 
cumulative gain@100 (nDCG@100) was retrieved through 
a detailed arXiv literature review cross-referenced by 
technical progress reported on Papers with Code. The 
reported dates correspond to the year during which 
a paper was first published to arXiv, and the reported 
results (nDCG@100) correspond to the result reported 
in the most recent version of each paper. Details on the 
MovieLens series of benchmarks can be found in Harper et 
al. 2015. 

To highlight progress on MovieLens 20M, scores were 
taken from the following papers:
Deep Variational Autoencoder with Shallow Parallel Path 
for Top-N Recommendation (VASP)
Enhancing VAEs for Collaborative Filtering: Flexible Priors 
& Gating Mechanisms
RaCT: Toward Amortized Ranking-Critical Training for 
Collaborative Filtering
Variational Autoencoders for Collaborative Filtering

Criteo
Data on Criteo area under curve score (AUC) was retrieved 
through a detailed arXiv literature review cross-referenced 
by technical progress reported on Papers with Code. 
The reported dates correspond to the year during which 
a paper was first published to arXiv, and the reported 
results (AUC) correspond to the result reported in the 
most recent version of each paper. Details on the Criteo 
benchmark can be found on the Criteo Kaggle Challenge 
page.

To highlight progress on Criteo, scores were taken from 
the following papers:
AutoInt: Automatic Feature Interaction Learning via Self-
Attentive Neural Networks
DeepFM: A Factorization-Machine Based Neural Network 
for CTR Prediction
DeepLight: Deep Lightweight Feature Interactions for 
Accelerating CTR Predictions in Ad Serving
FAT-DeepFFM: Field Attentive Deep Field-aware 
Factorization Machine

MaskNet: Introducing Feature-Wise Multiplication to CTR 
Ranking Models by Instance-Guided Mask
Product-Based Neural Networks for User Response 
Prediction

Arcade Learning Environment: Atari-57
Data on Arcade Learning Environment: Atari-57 mean 
human-normalized score was retrieved through a detailed 
arXiv literature review cross-referenced by technical 
progress reported on Papers with Code. The reported 
dates correspond to the year during which a paper was 
first published to arXiv, and the reported results (mean 
human-normalized score) correspond to the result 
reported in the most recent version of each paper. Details 
on the Arcade Learning Environment: Atari-57 benchmark 
can be found in the Arcade Learning Environment paper. 

To highlight progress on Arcade Learning Environment: 
Atari-57, scores were taken from the following papers:
Dueling Network Architectures for Deep Reinforcement 
Learning
Distributional Reinforcement Learning with Quantile 
Regression
GDI: Rethinking What Makes Reinforcement Learning 
Different From Supervised Learning
Mastering Atari, Go, Chess and Shogi by Planning with a 
Learned Model
Recurrent Experience Replay in Distributed Reinforcement 
Learning

Procgen 
Data on Procgen mean-normalized score was retrieved 
through a detailed arXiv literature review. The reported 
dates correspond to the year during which a paper was 
first published to arXiv, and the reported results (mean-
normalized score) correspond to the result reported in the 
most recent version of each paper. Details on the Procgen 
benchmark can be found in the Procgen paper. 

To highlight progress on Procgen, scores were taken from 
the following papers:
Automatic Data Augmentation for Generalization in 
Reinforcement Learning
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https://dl.acm.org/doi/10.1145/2827872
https://dl.acm.org/doi/10.1145/2827872
https://arxiv.org/pdf/2102.05774v1.pdf
https://arxiv.org/pdf/2102.05774v1.pdf
https://arxiv.org/pdf/1911.00936v1.pdf
https://arxiv.org/pdf/1911.00936v1.pdf
https://arxiv.org/pdf/1906.04281v2.pdf
https://arxiv.org/pdf/1906.04281v2.pdf
https://arxiv.org/pdf/1802.05814v1.pdf
https://paperswithcode.com/sota/click-through-rate-prediction-on-criteo
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https://paperswithcode.com/sota/click-through-rate-prediction-on-criteo
https://www.kaggle.com/c/criteo-display-ad-challenge
https://arxiv.org/pdf/1810.11921v2.pdf
https://arxiv.org/pdf/1810.11921v2.pdf
https://arxiv.org/pdf/2002.06987v3.pdf
https://arxiv.org/pdf/2002.06987v3.pdf
https://arxiv.org/pdf/1905.06336v1.pdf
https://arxiv.org/pdf/1905.06336v1.pdf
https://arxiv.org/pdf/2102.07619v2.pdf
https://arxiv.org/pdf/2102.07619v2.pdf
https://arxiv.org/pdf/1611.00144v1.pdf
https://arxiv.org/pdf/1611.00144v1.pdf
https://paperswithcode.com/sota/atari-games-on-atari-57?metric=Mean Human Normalized Score
https://paperswithcode.com/sota/atari-games-on-atari-57?metric=Mean Human Normalized Score
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https://arxiv.org/pdf/1207.4708v2.pdf
https://arxiv.org/pdf/1511.06581v3.pdf
https://arxiv.org/pdf/1511.06581v3.pdf
https://arxiv.org/pdf/1710.10044v1.pdf
https://arxiv.org/pdf/1710.10044v1.pdf
https://arxiv.org/abs/2106.06232v5
https://arxiv.org/abs/2106.06232v5
https://arxiv.org/abs/1911.08265v2
https://arxiv.org/abs/1911.08265v2
https://openreview.net/forum?id=r1lyTjAqYX
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https://arxiv.org/abs/1912.01588
https://arxiv.org/pdf/2006.12862.pdf
https://arxiv.org/pdf/2006.12862.pdf


210AppendixTable of Contents

Artificial Intelligence
Index Report 2022

Leveraging Procedural Generation to Benchmark 
Reinforcement Learning
Procedural Generalization by Planning with Self-
Supervised World Models

Chess
Data on the performance of chess software engines was 
taken from the Swedish Chess Computer Association’s 
ranking of top chess software engines. The Swedish Chess 
Computer Association tests computer chess software 
systems against one another and releases a ranking list of 
the top-performing systems. The ranking list produced by 
the Swedish Chess Computer Association is a statistically 
significant and meaningful measurement of chess engine 
performance because engines are pitted against one 
another in thousands of tournament-like games and each 
employ the same underlying hardware. Data on Magnus 
Carlsen’s top ELO score was taken from the International 
Chess Federation. 

Training Time and Number of Accelerators
Data on training time and number of accelerators for AI 
systems was taken from the MLPerf Training benchmark 
competitions. More specifically, the AI Index made use of 
data from the following MLPerf training competitions:
MLPerf Training v0.5, 2018
MLPerf Training v0.6, 2019
MLPerf Training v0.7, 2020
MLPerf Training v1.0, 2021
MLPerf Training v1.1, 2021

Details on the MLPerf Training benchmark can be found 
in the MLPerf Training benchmark paper. Details on 
the current benchmark categories as well as technical 
information about submission and competition 
subdivisions can be found on the MLPerf Training 
webpage.

ImageNet Training Cost 
Data on ImageNet Training cost was based on research 
from DAWNBench and the individual research of Deepak 
Narayanan. DAWNBench is a benchmark suite for end-to-
end deep-learning training and inference. DAWNBench 
provides a reference set of common deep-learning 
workloads for quantifying training time, training cost, 
inference latency, and inference cost across different 
optimization strategies, model architectures, software 
frameworks, clouds, and hardware. More details available 
at DAWNBench. 

Because DAWNBench was deprecated after March 2020, 
data on the training cost for the most recent round of 
MLPerf submissions was manually collected by Deepak 
Narayanan.

Chapter 2: Technical Performance
APPENDIX

http://proceedings.mlr.press/v119/cobbe20a/cobbe20a.pdf
http://proceedings.mlr.press/v119/cobbe20a/cobbe20a.pdf
https://arxiv.org/pdf/2111.01587v1.pdf
https://arxiv.org/pdf/2111.01587v1.pdf
http://ssdf.bosjo.net/
https://ratings.fide.com/profile/1503014
https://ratings.fide.com/profile/1503014
https://mlcommons.org/en/training-normal-05/
https://mlcommons.org/en/training-normal-06/
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AI Index Robotics Survey
The survey was distributed to 509 professors who specialize in robotics from 67 universities online over three waves from 
December 2021 to February 2022. The selection of universities was based on the World University Rankings 2021 with 
geographic representation across the globe. Please view the complete survey raw data in our public data folder here. 
The survey was completed by 101 professors from 43 universities, including:

  Aalborg University, Denmark
Ain Shams University, Egypt
Carnegie Mellon University, United States
Columbia University, United States
Cornell University, United States
Delft University of Technology, Netherlands
ETH Zurich, Switzerland
Hong Kong University of Science and Technology, Hong 
Kong
Korea Advanced Institute of Science and Technology, 
South Korea
KU Leuven, Belgium
Massachusetts Institute of Technology, United States
Nanyang Technological University, Singapore
National Polytechnic Institute, Mexico
National University of Singapore, Singapore
Peking University, China
Politecnico di Milano, Italy
Pontificia Universidad Católica de Chile, Chile
Princeton University, United States
Purdue University, United States
RWTH Aachen University, Germany
Seoul National University, South Korea

Stanford University, United States
Stellenbosch University, South Africa
Swiss Federal Institute of Technology Lausanne, 
Switzerland
Tokyo Institute of Technology, Japan
University of British Columbia, Canada
University of California Berkeley, United States
University of California Los Angeles, United States
University of California San Diego, United States
University of Cambridge, United Kingdom
University of Cape Town, South Africa
University College London, United Kingdom
University of Hong Kong, Hong kong
University of Illinois at Urbana-Champaign, United States
University of Malaya, Malaysia
University of Manchester, United Kingdom
University of Michigan, United States
Universitat Politècnica de Catalunya, Spain
University of Texas at Austin, United States
University of Tokyo, Japan
University of Toronto, Canada
University of Waterloo, Canada
Zhejiang University, China
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https://www.timeshighereducation.com/world-university-rankings/2022/world-ranking#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats
https://drive.google.com/drive/folders/1xSizP7CXW-zz2whXA7FQ5fE1biNiEidH?usp=sharing
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AI E THICS TRENDS AT FACCT AND 
NEURIPS
To understand trends at the ACM Conference on Fairness, 
Accountability, and Transparency, this section tracks 
FAccT papers published in conference proceedings 
from 2018 to 2021. We categorize author affiliations 
into academic, industry, nonprofit, government, and 
independent categories, while also tracking the location 
of their affiliated institution. Authors with multiple 
affiliations are counted once in each category (academic 
and industry), but multiple affiliations of the same type 
(i.e., authors belonging to two academic institutions) are 
counted once in the category. 

For the analysis conducted on NeurIPS publications, we 
identify workshops themed around real-world impact and 
label papers with a single main category in “healthcare,” 
“climate,” “finance,” “developing world,” or “other,” where 
“other” denotes a paper related to a real-world use case 
but not in one of the other categories.

We tally the number of papers in each category to reach 
the numbers found in Figure 3.3.3. Papers are not double-
counted in multiple categories. We note that this data 
may not be as accurate for data pre-2018 as societal 
impacts work at NeurIPS has historically been categorized 
under a broad “AI for social impact” umbrella,7 but it has 
recently been split into more granular research areas. 
Examples include workshops dedicated to machine 
learning for health,8 climate,9 policy & governance10, 
disaster response11, and the developing world.12

To track trends around specific technical topics at 
NeurIPS as in Figures 3.3.4–3.3.7, we count the number 

of papers accepted to the NeurIPS main track with titles 
containing keywords (e.g., “counterfactual” or “causal” 
for tracking papers related to causal effect), as well as 
papers submitted to related workshops. See the list of 
workshops considered for analysis here. 

ME TA-ANALYSIS OF FAIRNESS 
AND BIAS ME TRICS
For the analysis conducted on fairness and bias metrics in 
AI, we identify and report on benchmark and diagnostic 
metrics which have been consistently cited in the 
academic community, reported on a public leaderboard, 
or reported for publicly available baseline models (e.g., 
GPT-3, BERT, ALBERT). We note that research paper 
citations are a lagging indicator of adoption, and metrics 
which have been very recently adopted may not be 
reflected in the data for 2021.

For Figures 3.1.1 and 3.1.2, we track metrics from the 
following papers and projects: 
 Aligning AI with Shared Human Values
Assessing Social and Intersectional Biases in 
Contextualized Word Representations
Bias in Bios: A Case Study of Semantic Representation Bias 
in a High-Stakes Setting  
BOLD: Dataset and Metrics for Measuring Biases in Open-
Ended Language Generation
Certifying and Removing Disparate Impact
CivilComments: Jigsaw Unintended Bias in Toxicity 
Classification
CrowS-Pairs: A Challenge Dataset for Measuring Social 
Biases in Masked Language Models

Chapter 3: Technical AI Ethics
APPENDIX

CHAPTER 3: TECHNICAL AI ETHICS

7 See 2018 Workshop on Ethical, Social and Governance Issues in AI 2018, 2018 AI for Social Good Workshop, 2019 Joint Workshop on AI for Social Good, 2020 Resistance AI Workshop, 2020 Navigating the 
Broader Impacts of AI Research Workshop.
8  See 2014 Machine Learning for Clinical Data Analysis, Healthcare and Genomics, 2015 Machine Learning for Healthcare, 2016 Machine Learning for Health, 2017 Machine Learning for Health.
9 See 2013 Machine Learning for Sustainability, 2020 AI for Earth Sciences, 2019, 2020, 2021 Tackling Climate Change with ML.
10 See 2016 People and Machines, 2019 Joint Workshop on AI for Social Good–Public Policy, 2021 Human-Centered AI.
11  See 2019 AI for Humanitarian Assistance and Disaster Response, 2020 Second Workshop on AI for Humanitarian Assistance and Disaster Response, 2021 Third Workshop on AI for Humanitarian 
Assistance and Disaster Response.
12 See 2017–2021 Machine Learning for the Developing World Workshops. 

https://docs.google.com/spreadsheets/d/1mpiNall3ZfU_UbngKo5GmeGDA-DUIYzpTJapSgG2tes/edit?usp=sharing
https://arxiv.org/abs/2008.02275
https://arxiv.org/abs/1911.01485
https://arxiv.org/abs/1911.01485
https://arxiv.org/abs/1901.09451
https://arxiv.org/abs/1901.09451
https://arxiv.org/abs/2101.11718
https://arxiv.org/abs/2101.11718
https://arxiv.org/pdf/1412.3756.pdf
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
https://arxiv.org/abs/2010.00133
https://arxiv.org/abs/2010.00133
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Detecting Emergent Intersectional Biases: Contextualized 
Word Embeddings Contain a Distribution of Human-Like 
Biases
Equality of Opportunity in Supervised Learning
Evaluating Gender Bias in Machine Translation
Evaluating Gender Bias in Natural Language Inference
Examining Gender Bias in Languages with Grammatical 
Gender
Fairness Through Awareness 
Gender Bias in Coreference Resolution
Gender Bias in Coreference Resolution: Evaluation and 
Debiasing Methods
Gender Bias in Multilingual Embeddings and Cross-
Lingual Transfer
Gender Shades: Intersectional Accuracy Disparities in 
Commercial Gender Classification
Image Representations Learned with Unsupervised 
Pretraining Contain Human-Like Biases
Measuring and Reducing Gendered Correlations in 
Pretrained Models
Measuring Bias in Contextualized Word Representations
Measuring Bias with Wasserstein Distance
Nuanced Metrics for Measuring Unintended Bias with Real 
Data for Text Classification
On Formalizing Fairness in Prediction with Machine 
Learning
On Measuring Social Biases in Sentence Encoders
Perspective API
RealToxicityPrompts: Evaluating Neural Toxic 
Degeneration in Language Models
Scaling Language Models: Methods, Analysis & Insights 
from Training Gopher
Semantics Derived Automatically from Language Corpora 
Contain Human-Like Biases
StereoSet: Measuring Stereotypical Bias in Pretrained 
Language Models
The Woman Worked as a Babysitter: On Biases in 
Language Generation
When Worlds Collide: Integrating Different Counterfactual 
Assumptions in Fairness
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NATURAL LANGUAGE PROCESSING 
BIAS ME TRICS
In Section 3.2, we track citations of the Perspective API 
created by Jigsaw at Google. The Perspective API has been 
adopted widely by researchers and engineers in natural 
language processing. Its creators define toxicity as “a rude, 
disrespectful, or unreasonable comment that is likely to 
make someone leave a discussion,” and the tool is powered 
by machine learning models trained on a proprietary 
dataset of comments from Wikipedia and news websites. 
We include the following papers in our analysis: 

#ContextMatters: Advantages and Limitations of Using 
Machine Learning to Support Women in Politics
A General Language Assistant as a Laboratory for 
Alignment
A Machine Learning Approach to Comment Toxicity 
Classification
A Novel Preprocessing Technique for Toxic Comment 
Classification
Adversarial Text Generation for Google’s Perspective API
Avoiding Unintended Bias in Toxicity Classification with 
Neural Networks
Badharacters: Imperceptible NLP Attacks
Challenges in Detoxifying Language Models
Classification of Online Toxic Comments Using Machine 
Learning Algorithms
Context Aware Text Classification and Recommendation 
Model for Toxic Comments Using Logistic Regression
Detecting Cross-Geographic Biases in Toxicity Modeling on 
Social Media
Detoxifying Language Models Risks Marginalizing Minority 
Voices
Fighting Hate Speech, Silencing Drag Queens? Artificial 
Intelligence in Content Moderation and Risks to LGBTQ 
Voices Online
HATEMOJI: A Test Suite and Adversarially Generated 
Dataset for Benchmarking and Detecting Emoji-Based 
Hate
HotFlip: White-Box Adversarial Examples for Text 
Classification
Identifying Latent Toxic Features on YouTube Using Non-
Negative Matrix Factorization

https://dl.acm.org/doi/abs/10.1145/3461702.3462536
https://dl.acm.org/doi/abs/10.1145/3461702.3462536
https://dl.acm.org/doi/abs/10.1145/3461702.3462536
https://arxiv.org/abs/1610.02413
https://aclanthology.org/P19-1164.pdf
https://arxiv.org/abs/2105.05541
https://arxiv.org/abs/1909.02224.pdf
https://arxiv.org/abs/1909.02224.pdf
https://arxiv.org/abs/1104.3913
https://arxiv.org/abs/1804.09301
https://arxiv.org/abs/1804.06876
https://arxiv.org/abs/1804.06876
https://arxiv.org/abs/2005.00699
https://arxiv.org/abs/2005.00699
https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://arxiv.org/abs/2010.15052
https://arxiv.org/abs/2010.15052
https://arxiv.org/pdf/2010.06032.pdf
https://arxiv.org/pdf/2010.06032.pdf
https://arxiv.org/abs/1906.07337
https://securedata.lol/camera_ready/37.pdf
https://arxiv.org/abs/1903.04561
https://arxiv.org/abs/1903.04561
https://arxiv.org/pdf/1710.03184.pdf
https://arxiv.org/pdf/1710.03184.pdf
https://arxiv.org/abs/1903.10561
https://www.perspectiveapi.com/
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/1608.07187
https://arxiv.org/abs/1608.07187
https://arxiv.org/abs/2004.09456
https://arxiv.org/abs/2004.09456
https://arxiv.org/abs/1909.01326
https://arxiv.org/abs/1909.01326
https://papers.nips.cc/paper/2017/file/1271a7029c9df08643b631b02cf9e116-Paper.pdf
https://papers.nips.cc/paper/2017/file/1271a7029c9df08643b631b02cf9e116-Paper.pdf
https://arxiv.org/abs/2110.00116
https://arxiv.org/abs/2110.00116
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/1903.06765
https://arxiv.org/abs/1903.06765
https://ieeexplore.ieee.org/document/9445252
https://ieeexplore.ieee.org/document/9445252
https://ieeexplore.ieee.org/document/9087368
https://ieeexplore.ieee.org/document/9087368
https://arxiv.org/abs/2106.09898
https://arxiv.org/abs/2109.07445
https://ieeexplore.ieee.org/document/9120939
https://ieeexplore.ieee.org/document/9120939
https://www.researchgate.net/publication/343223276_Context_Aware_Text_Classification_and_Recommendation_Model_for_Toxic_Comments_Using_Logistic_Regression
https://www.researchgate.net/publication/343223276_Context_Aware_Text_Classification_and_Recommendation_Model_for_Toxic_Comments_Using_Logistic_Regression
https://arxiv.org/abs/2104.06999
https://arxiv.org/abs/2104.06999
https://arxiv.org/abs/2104.06390
https://arxiv.org/abs/2104.06390
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://arxiv.org/abs/2108.05921
https://arxiv.org/abs/2108.05921
https://arxiv.org/abs/2108.05921
https://arxiv.org/abs/2108.05921
https://arxiv.org/abs/1712.06751
https://arxiv.org/abs/1712.06751
https://www.researchgate.net/publication/336568016_Identifying_Latent_Toxic_Features_on_YouTube_Using_Non-negative_Matrix_Factorization
https://www.researchgate.net/publication/336568016_Identifying_Latent_Toxic_Features_on_YouTube_Using_Non-negative_Matrix_Factorization
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Interpreting Social Respect: A Normative Lens for ML 
Models
Knowledge-Based Neural Framework for Sexism 
Detection and Classification
Large Pretrained Language Models Contain Human-Like 
Biases of What Is Right and Wrong to Do
Leveraging Multilingual Transformers for Hate Speech 
Detection
Limitations of Pinned AUC for Measuring Unintended Bias
Machine Learning Suites for Online Toxicity Detection
Mitigating Harm in Language Models with Conditional-
Likelihood Filtration
On-the-Fly Controlled Text Generation with Experts and 
Anti-Experts
Process for Adapting Language Models to Society (PALMS) 
with Values-Targeted Datasets
Racial Bias in Hate Speech and Abusive Language 
Detection Datasets
RealToxicityPrompts: Evaluating Neural Toxic 
Degeneration in Language Models
Scaling Language Models: Methods, Analysis & Insights 
from Training Gopher
Self-Diagnosis and Self-Debiasing: A Proposal for 
Reducing Corpus-Based Bias in NLP
Social Bias Frames: Reasoning About Social and Power 
Implications of Language
Social Biases in NLP Models as Barriers for Persons with 
Disabilities
Stereotypical Bias Removal for Hate Speech Detection 
Task Using Knowledge-Based Generalizations
The Risk of Racial Bias in Hate Speech Detection 
Towards Measuring Adversarial Twitter Interactions 
Against Candidates in the US Midterm Elections
Toxic Comment Classification Using Hybrid Deep Learning 
Model
Toxicity-Associated News Classification: The Impact of 
Metadata and Content Features
Understanding BERT Performance in Propaganda Analysis
White-to-Black: Efficient Distillation of Black-Box 
Adversarial Attacks
Women, Politics and Twitter: Using Machine Learning to 
Change the Discourse
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While the Perspective API is used widely within machine 
learning research and also for measuring online toxicity, 
toxicity in the specific domains used to train the models 
undergirding Perspective (e.g., news, Wikipedia) may not 
be broadly representative of all forms of toxicity (e.g., 
trolling). Other known caveats include biases against text 
written by minority voices: The Perspective API has been 
shown to disproportionately assign high toxicity scores 
to text that contains mentions of minority identities (e.g., 
“I am a gay man”). As a result, detoxification techniques 
built with labels sourced from the Perspective API result 
in models that are less capable of modeling language 
used by minority groups, and they avoid mentioning 
minority identities.

We note that the effect size metric reported in the 
Word Embeddings Association Test (WEAT) section is 
highly sensitive to rare words, as it has been shown 
that removing less than 1% of relevant documents in 
a corpus can significantly impact the WEAT effect size. 
This means that effect size is not guaranteed to be a 
robust metric for assessing bias in embeddings. While 
we report on a subset of embedding association tasks 
measuring bias along gender and racial axes, these 
embedding association tests have been extended to 
quantify the effect across intersectional axes (e.g., 
EuropeanAmerican+male, AfricanAmerican+male, 
AfricanAmerican+female). 

In the analysis of embeddings from over 100 years of 
U.S. Census data, embedding bias was measured by 
computing the difference between average embedding 
distances. For example, gender bias is calculated as the 
average distance of embeddings of words associated with 
women (e.g., she, female) compared to embeddings of 
words for occupations (e.g., teacher, lawyer), minus the 
same average distance calculated for words associated 
with men. 

https://arxiv.org/abs/1908.07336
https://arxiv.org/abs/1908.07336
http://ceur-ws.org/Vol-2943/exist_paper7.pdf
http://ceur-ws.org/Vol-2943/exist_paper7.pdf
https://arxiv.org/abs/2103.11790
https://arxiv.org/abs/2103.11790
https://arxiv.org/abs/2101.03207
https://arxiv.org/abs/2101.03207
https://arxiv.org/abs/1903.02088
https://arxiv.org/abs/1810.01869
https://arxiv.org/abs/2108.07790
https://arxiv.org/abs/2108.07790
https://arxiv.org/abs/2105.03023
https://arxiv.org/abs/2105.03023
https://aclanthology.org/W19-3504/
https://aclanthology.org/W19-3504/
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2103.00453
https://arxiv.org/abs/2103.00453
https://arxiv.org/abs/1911.03891
https://arxiv.org/abs/1911.03891
https://arxiv.org/abs/2005.00813
https://arxiv.org/abs/2005.00813
https://arxiv.org/abs/2001.05495
https://arxiv.org/abs/2001.05495
https://aclanthology.org/P19-1163/
https://arxiv.org/abs/2005.04411
https://arxiv.org/abs/2005.04411
https://link.springer.com/chapter/10.1007/978-981-15-8677-4_38
https://link.springer.com/chapter/10.1007/978-981-15-8677-4_38
http://workshop-proceedings.icwsm.org/pdf/2021_16.pdf
http://workshop-proceedings.icwsm.org/pdf/2021_16.pdf
https://arxiv.org/abs/1911.04525
https://arxiv.org/abs/1904.02405
https://arxiv.org/abs/1904.02405
https://arxiv.org/abs/1911.11025
https://arxiv.org/abs/1911.11025
https://arxiv.org/abs/2104.06390
https://arxiv.org/abs/2104.06390
http://proceedings.mlr.press/v97/brunet19a/brunet19a.pdf
https://arxiv.org/abs/1911.01485
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FACTUALIT Y AND TRUTHFULNESS

Definitions
The concepts of factuality, factual correctness, factual 
accuracy, and veracity are all used to refer to conformity 
with facts or truth. Recent work in AI aims to assess 
factual correctness within language models and 
characterize their limitations. 

While human truthfulness is a relatively well-understood 
concept, truthfulness is not a well-characterized concept 
within the context of AI. A group of researchers has 
proposed frameworks for what it means for a system 
to be truthful—for example, a broadly truthful system 
should avoid lying or using true statements to mislead 
or misdirect; should be clear, informative, and (mostly) 
cooperative in conversation; and should be well-calibrated, 
self-aware, and open about the limits of its knowledge. 
A definition of narrow truthfulness may simply refer to 
systems which avoid stating falsehoods. The authors of 
TruthfulQA define a system as truthful only if it avoids 
asserting a false statement; refusing to answer a question, 
expressing uncertainty, or giving a true but irrelevant 
answer may be considered truthful but not informative. 

Truthfulness is related to alignment: A truthful system is 
aligned with human values and goals. In one definition of 
alignment, an aligned system is one that is helpful, honest, 
and harmless. Since we cannot yet measure honesty within 
a system, truthfulness can be used as a proxy.
 
An honest system is one that asserts only what it 
“believes” or one that never contradicts its own beliefs. 
A system can be honest but not truthful—for example, if 
an honest system believes that vaccines are unsafe, it can 
claim this honestly, despite the statement being factually 
incorrect. Conversely, a system can be truthful but not 
honest: It may believe vaccines are unsafe but asserts 
they are safe to pass a test. Another work proposes that 
an honest system should give accurate information, not 
mislead users, be calibrated (e.g., it should be correct 80% 
of the time when it claims 80% confidence), and express 
appropriate levels of uncertainty.

Hallucination refers to language models fabricating 
statements not found in factually correct supporting 
evidence or input documents. In closed-form dialog, 
summarization, or question-answering, a system that 
hallucinates is considered untruthful. 

Language Diversity in Training Data 
Imbalanced language distribution in training data 
impacts the performance of general-purpose language 
models. For example, the Gopher family of models is 
trained on MassiveText (10.5TB), which is a dataset 
made up of 99% English. Similarly, only 7.4% of GPT-3 
training data is in non-English languages. In contrast, 
XGLM, a recent model family from Meta AI, is trained on 
a training data of 30 languages, and upsamples low-
resource languages to create a more balanced language 
representation. See Figure 1 on the XGLM paper that 
compares the language distribution of XGLM and GPT-3. 

In addition, Figure 7 of the XGLM paper highlights the 
extent to which language models can effectively store 
factual knowledge by comparing the performance of 
XGLM (a multilingual language model) with GPT-3, a 
monolingual model. Performance was evaluated on 
knowledge triplet completion using the mLAMA dataset, 
which was translated from the English benchmark LAMA 
using Google Translate. GPT-3 outperforms in English, 
but XGLM outperforms in non-English languages. Further 
results show that more diverse language representation 
improves language model performance in tasks such as 
translation. 

In 2021, Congress inquired into the content moderation 
practices of social media companies in non-English 
languages, and emphasized the importance of equal 
access to truthful and trustworthy information regardless 
of language. As these companies start to adopt language 
models into their fact-checking and content moderation 
processes for languages around the world, it is critical to 
be able to measure the disproportionate negative impact 
of using models which underperform on non-English 
languages.

Chapter 3: Technical AI Ethics
APPENDIX

https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2110.06674
https://arxiv.org/abs/2109.07958
https://arxiv.org/pdf/2112.00861.pdf
https://arxiv.org/pdf/2112.00861.pdf
https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf
https://www.lesswrong.com/posts/sdxZdGFtAwHGFGKhg/truthful-and-honest-ai
https://www.lesswrong.com/posts/sdxZdGFtAwHGFGKhg/truthful-and-honest-ai
https://arxiv.org/pdf/2110.06674.pdf
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https://arxiv.org/abs/2005.00661
https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf
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https://thehill.com/policy/technology/565637-democrats-urge-tech-ceos-to-combat-spanish-disinformation
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EMSI BURNING GLASS
Prepared by Julia Nitschke, Summer Jasinski, Bledi Taska 
and Rucha Vankudre

Emsi Burning Glass delivers job market analytics 
that empower employers, workers, and educators to 
make data-driven decisions. The company’s artificial 
intelligence technology analyzes hundreds of millions 
of job postings and real-life career transitions to provide 
insight into labor market patterns. This real-time strategic 
intelligence offers crucial insights, such as what jobs are 
most in demand, the specific skills employers need, and 
the career directions that offer the highest potential for 
workers. For more information, visit burning-glass.com.
 
Job Posting Data
To support these analyses, Emsi Burning Glass mined 
its dataset of millions of job postings collected since 
2010. Emsi Burning Glass collects postings from over 
45,000 online job sites to develop a comprehensive, 
real-time portrait of labor market demand. It aggregates 
job postings, removes duplicates, and extracts data 
from job postings text. This includes information on job 
title, employer, industry, and region, as well as required 
experience, education, and skills.

Job postings are useful for understanding trends in the 
labor market because they allow for a detailed, real-
time look at the skills employers seek. To assess the 
representativeness of job postings data, Emsi Burning 
Glass conducts a number of analyses to compare the 
distribution of job postings to the distribution of official 
government and other third-party sources in the United 
States. The primary source of government data on U.S. 
job postings is the Job Openings and Labor Turnover 
Survey (JOLTS) program, conducted by the Bureau of 
Labor Statistics. Based on comparisons between JOLTS 

and Emsi Burning Glass, the labor market demand 
captured by Emsi Burning Glass data represents over 95% 
of the total labor demand. Jobs not posted online are 
usually in small businesses (the classic example being the 
“Help Wanted” sign in the restaurant window) and union 
hiring halls.
 
Measuring Demand for AI
In order to measure employers’ demand for AI skills, Emsi 
Burning Glass uses its skills taxonomy of over 17,000 skills. 
The list of AI skills from Emsi Burning Glass data is shown 
below, with associated skill clusters. While some skills 
are considered to be in the AI cluster specifically, for the 
purposes of this report, all skills below were considered AI 
skills. A job posting was considered an AI job if it requested 
one or more of these skills.
 
Artificial Intelligence: Expert System, IBM Watson, IPSoft 
Amelia, Ithink, Virtual Agents, Autonomous Systems, Lidar, 
OpenCV, Path Planning, Remote Sensing
 
Natural Language Processing (NLP): ANTLR, Automatic 
Speech Recognition (ASR), Chatbot, Computational 
Linguistics, Distinguo, Latent Dirichlet Allocation, Latent 
Semantic Analysis, Lexalytics, Lexical Acquisition, Lexical 
Semantics, Machine Translation (MT), Modular Audio 
Recognition Framework (MARF), MoSes, Natural Language 
Processing, Natural Language Toolkit (NLTK), Nearest 
Neighbor Algorithm, OpenNLP, Sentiment Analysis/
Opinion Mining, Speech Recognition, Text Mining, Text to 
Speech (TTS), Tokenization, Word2Vec
 
Neural Networks: Caffe Deep Learning Framework, 
Convolutional Neural Network (CNN), Deep Learning, 
Deeplearning4j, Keras, Long Short-Term Memory (LSTM), 
MXNet, Neural Networks, Pybrain, Recurrent Neural 
Network (RNN), TensorFlow
 

CHAPTER 4: THE ECONOMY  
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Machine Learning: AdaBoost algorithm, Boosting 
(Machine Learning), Chi Square Automatic Interaction 
Detection (CHAID), Classification Algorithms, Clustering 
Algorithms, Decision Trees, Dimensionality Reduction, 
Google Cloud Machine Learning Platform, Gradient 
boosting, H2O (software), Libsvm, Machine Learning, 
Madlib, Mahout, Microsoft Cognitive Toolkit, MLPACK (C++ 
library), Mlpy, Random Forests, Recommender Systems, 
Scikit-learn, Semi-Supervised Learning, Supervised 
Learning (Machine Learning), Support Vector Machines 
(SVM), Semantic Driven Subtractive Clustering Method 
(SDSCM), Torch (Machine Learning), Unsupervised 
Learning, Vowpal, Xgboost
 
Robotics: Blue Prism, Electromechanical Systems, 
Motion Planning, Motoman Robot Programming, Robot 
Framework, Robotic Systems, Robot Operating System 
(ROS), Robot Programming, Servo Drives / Motors, 
Simultaneous Localization and Mapping (SLAM)
 
Visual Image Recognition: Computer Vision, Image 
Processing, Image Recognition, Machine Vision, Object 
Recognition
 

LINKEDIN
Prepared by Akash Kaura and Murat Erer

Country Sample
Included countries represent a select sample of eligible 
countries with at least 40% labor force coverage by 
LinkedIn and at least 10 AI hires in any given month. 
China and India were included in this sample because of 
their increasing importance in the global economy, but 
LinkedIn coverage in these countries does not reach 40% 
of the workforce. Insights for these countries may not 
provide as full a picture as other countries, and should be 
interpreted accordingly.

Skills (and AI Skills)
LinkedIn members self-report their skills on their LinkedIn 
profiles. Currently, more than 38,000 distinct, standardized 
skills are identified by LinkedIn. These have been coded 

and classified by taxonomists at LinkedIn into 249 skill 
groupings, which are the skill groups represented in the 
dataset. The top skills that make up the AI skill grouping 
are machine learning, natural language processing, data 
structures, artificial intelligence, computer vision, image 
processing, deep learning, TensorFlow, Pandas (software), 
and OpenCV, among others.

Skill groupings are derived by expert taxonomists 
through a similarity-index methodology that measures 
skill composition at the industry level. Industries are 
classified according to the ISIC 4 industry classification 
(Zhu et al., 2018).

Skills Genome
For any entity (occupation or job, country, sector, etc.), the 
skill genome is an ordered list (a vector) of the 50 “most 
characteristic skills” of that entity. These most characteristic 
skills are identified using a TF-IDF algorithm to identify the 
most representative skills of the target entity, while down-
ranking ubiquitous skills that add little information about 
that specific entity (e.g., Microsoft Word).

TF-IDF is a statistical measure that evaluates how 
representative a word (in this case a skill) is to a selected 
entity. This is done by multiplying two metrics:
 1. The term frequency of a skill in an entity (TF).
 2.  The logarithmic inverse entity frequency of the skill 

across a set of entities (IDF). This indicates how 
common or rare a word is in the entire entity set. 
The closer IDF is to 0, the more common a word is.

So, if the skill is very common across LinkedIn entities, 
and appears in many job or member descriptions, the IDF 
will approach 0. If, on the other hand, the skill is unique to 
specific entities, the IDF will approach 1. Details available 
at LinkedIn’s Skills Genome and LinkedIn-World Bank 
Methodology note.

AI Skills Penetration 
The aim of this indicator is to measure the intensity of AI 
skills in an entity (in a particular country, industry, gender, 
etc.) through the following methodology: 

https://engineering.linkedin.com/blog/2019/how-we-mapped-the-skills-genome-of-emerging-jobs
https://documents1.worldbank.org/curated/en/827991542143093021/pdf/World-Bank-Group-LinkedIn-Data-Insights-Jobs-Skills-and-Migration-Trends-Methodology-and-Validation-Results.pdf
https://documents1.worldbank.org/curated/en/827991542143093021/pdf/World-Bank-Group-LinkedIn-Data-Insights-Jobs-Skills-and-Migration-Trends-Methodology-and-Validation-Results.pdf
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 •  Compute frequencies for all self-added skills by 
LinkedIn members in a given entity (occupation, 
industry, etc.) in 2015–2021. 

 •  Re-weight skill frequencies using a TF-IDF model 
to get the top 50 most representative skills in that 
entity. These 50 skills compose the “skill genome” of 
that entity. 

 •  Compute the share of skills that belong to the AI skill 
group out of the top skills in the selected entity. 

Interpretation: The AI skill penetration rate signals the 
prevalence of AI skills across occupations, or the intensity 
with which LinkedIn members utilize AI skills in their 
jobs. For example, the top 50 skills for the occupation of 
engineer are calculated based on the weighted frequency 
with which they appear in LinkedIn members’ profiles. If 
four of the skills that engineers possess belong to the AI 
skill group, this measure indicates that the penetration of 
AI skills is estimated to be 8% among engineers (e.g., 4/50).

Jobs or Occupations
LinkedIn member titles are standardized and grouped 
into approximately 15,000 occupations. These are not 
sector or country specific. These occupations are further 
standardized into approximately 3,600 occupation 
representatives. Occupation representatives group 
occupations with a common role and specialty, regardless 
of seniority.

AI Jobs or Occupations
An AI job (technically, occupation representative) is 
an occupation representative that requires AI skills to 
perform the job. Skills penetration is used as a signal 
for whether AI skills are prevalent in an occupation 
representative, in any sector where the occupation 
representative may exist. Examples of such occupations 
include (but are not limited to): machine learning 
engineer, artificial intelligence specialist, data scientist, 
computer vision engineer, etc.

AI Talent
A LinkedIn member is considered AI talent if they have 

explicitly added AI skills to their profile and/or they are 
occupied in an AI occupation representative. The counts of 
AI talent are used to calculate talent concentration metrics 
(e.g. to calculate the country-level AI talent concentration, 
we use the counts of AI talent at the country level vis-
a-vis the counts of LinkedIn members in the respective 
countries).

Relative AI Skills Penetration
To allow for skills penetration comparisons across 
countries, the skills genomes are calculated and a relevant 
benchmark is selected (e.g., global average). A ratio is then 
constructed between a country’s and the benchmark’s AI 
skills penetrations, controlling for occupations. 

Interpretation: A country’s relative AI skills penetration of 
1.5 indicates that AI skills are 1.5 times as frequent as in 
the benchmark, for an overlapping set of occupations.

Global Comparison
For cross-country comparison, we present the relative 
penetration rate of AI skills, measured as the sum of the 
penetration of each AI skill across occupations in a given 
country, divided by the average global penetration of AI 
skills across the overlapping occupations in a sample of 
countries.

Interpretation: A relative penetration rate of 2 means 
that the average penetration of AI skills in that country 
is two times the global average across the same set of 
occupations.

Global Comparison: By Industry
The relative AI skills penetration by country for industry 
provides an in-depth sectoral decomposition of AI skill 
penetration across industries and sample countries.

Interpretation: A country’s relative AI skill penetration 
rate of 2 in the education sector means that the average 
penetration of AI skills in that country is two times the 
global average across the same set of occupations in that 
sector.



219AppendixTable of Contents

Artificial Intelligence
Index Report 2022 Chapter 4: The Economy and Education

APPENDIX

Relative AI Hiring Index
 •  LinkedIn Hiring Rate or Overall Hiring Rate is 

a measure of hires normalized by LinkedIn 
membership. It is computed as the percentage of 
LinkedIn members who added a new employer in 
the same period the job began, divided by the total 
number of LinkedIn members in the corresponding 
location.

 •  AI Hiring Rate is computed following the overall 
hiring rate methodology, but only considering 
members classified as AI talent.

 •  Relative AI Hiring Index is the pace of change in AI 
Hiring Rate normalized by the pace of change in 
Overall Hiring Rate, providing a picture of whether 
hiring of AI talent is growing at a higher, equal, 
or lower rate than overall hiring in a market. The 
relative AI Hiring Index is equal to 1.0 when AI hiring 
and overall hiring are growing at the same rate year 
on year.

Interpretation: Relative AI Hiring Index shows how fast 
each country is experiencing growth in AI talent hiring 
relative to growth in overall hiring in the country. A ratio 
of 1.2 means the growth in AI talent hiring has outpaced 
the growth in overall hiring by 20%.

NE TBASE QUID
Prepared by Julie Kim and Tejas Sirohi

NetBase Quid delivers AI-powered consumer and market 
intelligence to enable business reinvention in a noisy 
and unpredictable world. The software applies artificial 
intelligence to reveal patterns in large, unstructured 
datasets and to generate visualizations that enable users 
to make smart, data-driven decisions accurately, quickly, 
and efficiently. NetBase Quid uses Boolean query to 
search for focus areas, topics, and keywords within social, 
news, forums and blogs, companies, and patents data 
sources, as well as other custom datasets. NetBase Quid 
then visualizes these data points based on the semantic 
similarity.

Search, Data Sources, and Scope 
Over 6 million global public and private company profiles 
from multiple data sources are indexed in order to 
search across company descriptions, while filtering and 
including metadata ranging from investment information 
to firmographic information, such as founded year, HQ 
location, and more. Company information is updated on a 
weekly basis. NetBase Quid algorithm reads a big amount 
of text data from each document to make links between 
different documents based on their similar language. This 
process is repeated at an immense scale, which produces 
a network with different clusters identifying distinct topics 
or focus areas. Trends are identified based on keywords, 
phrases, people, companies, institutions that NetBase 
Quid identifies, and the other metadata that is put into the 
software.

Data
Organization data is embedded from Capital IQ and 
Crunchbase. These companies include all types of 
companies (private, public, operating, operating as a 
subsidiary, out of business) throughout the world. The 
investment data includes private investments, M&A, public 
offerings, minority stakes made by PE/VCs, corporate 
venture arms, governments, and institutions both within 
and outside the United States. Some data is simply 
unreachable—for instance, when the investors or the 
funding amounts by investors are undisclosed. NetBase 
Quid also embeds firmographic information such as 
founding year and HQ location.

NetBase Quid embeds Capital IQ data as a default and 
adds in data from Crunchbase for the ones that are not 
captured in Capital IQ. This not only yields comprehensive 
and accurate data on all global organizations, but it also 
captures early-stage startups and funding events data. 
Company information is uploaded on a weekly basis.

Search Parameters
Boolean query is used to search for focus areas, topics, 
and keywords within the archived company database, 
within their business descriptions and websites. We can 
filter out the search results by HQ regions, investment 



220AppendixTable of Contents

Artificial Intelligence
Index Report 2022 Chapter 4: The Economy and Education

APPENDIX

amount, operating status, organization type (private/
public), and founding year. NetBase Quid then visualizes 
these companies by the semantic similarity. If there 
are more than 7,000 companies from the search result, 
NetBase Quid selects the 7,000 most relevant companies for 
visualization based on the language algorithm.

Boolean Search: “artificial intelligence” or “AI” or “machine 
learning” OR “deep learning”

Companies: 
 •  Chart 4.2.1: Global AI & ML companies that have 

been invested (private, IPO, M&A) from 01/01/2012 to 
12/31/2021.

 •  Chart 4.2.2–4.2.12: Global AI & ML companies that have 
invested over $1.5M for the last 10 years (January 1, 
2012 to December 31, 2021)—7,000 companies out of 
7,500 companies have been selected through Quid’s 
relevance algorithm.

Target Event Definitions
 •  Private investments: A private placement is a private 

sale of newly issued securities (equity or debt) by a 
company to a selected investor or a selected group 
of investors. The stakes that buyers take in private 
placements are often minority stakes (under 50%), 
although it is possible to take control of a company 
through a private placement as well, in which case 
the private placement would be a majority stake 
investment.

 •  Minority investment: These refer to minority stake 
acquisitions in Quid, which take place when the buyer 
acquires less than 50% of the existing ownership stake 
in entities, asset product, and business divisions.

 •  M&A: This refers to a buyer acquiring more than 50% 
of the existing ownership stake in entities, asset 
product, and business divisions.

COMPUTING RESEARCH 
ASSOCIATION (CRA TAULBEE 
SURVEY)
Prepared by Betsy Bizot (CRA senior research associate)
 
Source
Computing Research Association (CRA) members 
are 200-plus North American organizations active in 
computing research: academic departments of computer 
science and computer engineering; laboratories and 
centers in industry, government, and academia; and 
affiliated professional societies (AAAI, ACM, CACS/AIC, 
IEEE Computer Society, SIAM USENIX). CRA’s mission 
is to enhance innovation by joining with industry, 
government, and academia to strengthen research and 
advanced education in computing. Learn more about 
CRA here. 

Methodology
CRA Taulbee Survey gathers survey data during the fall 
of each academic year by reaching out to over 200 PhD-
granting departments. Details about the Taulbee Survey 
can be found here. Taulbee doesn’t directly survey the 
students. The department identifies each new PhD’s area 
of specialization as well as their type of employment. 
Data is collected from September to January of each 
academic year for PhDs awarded in the previous 
academic year. Results are published in May after data 
collection closes. So the 2020 data points were newly 
available last spring, and the numbers provided for 2021 
will be available in May 2020.  

The CRA Taulbee Survey is sent only to doctoral 
departments of computer science, computer 
engineering, and information science/systems. 
Historically, (a) Taulbee covers 1/4 to 1/3 of total BS CS 
recipients in the United States; (b) the percent of women 
earning bachelor’s degrees is lower in the Taulbee 
schools than overall; and (c) Taulbee tracks the trends in 
overall CS production.

https://cra.org/
https://cra.org/resources/taulbee-survey/
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Nuances
 •  Of particular interest in PhD job market trends are 

the metrics on the AI PhD area of specialization. The 
categorization of specialty areas changed in 2008 and 
was clarified in 2016. From 2004-2007, AI and robotics 
were grouped; from 2008-present, AI is separate; 2016 
clarified to respondents that AI includes ML. 

 •  Notes about the trends in new tenure-track hires 
(overall and particularly at AAU schools): In the 2018 
Taulbee Survey, for the first time we asked how many 
new hires had come from the following sources: new 
PhD, postdoc, industry, and other academic. Results 
indicated that 29% of new assistant professors came 
from another academic institution.

 •  Some may have been teaching or research faculty 
rather than tenure-track, but there is probably some 
movement between institutions, meaning the total 
number hired overstates the total who are actually 
new.
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BLOOMBERG GOVERNMENT
Prepared by Amanda Allen

Bloomberg Government is a premium, subscription-
based service that provides comprehensive information 
and analytics for professionals who interact with—or 
are affected by—the government. Delivering news, 
analytics, and data-driven decision tools, Bloomberg 
Government’s digital workspace gives an intelligent edge 
to government affairs and contracting professionals. For 
more information or a demo, visit about.bgov.com.
 
Methodology
Contract Spending: Bloomberg Government’s Contracts 
Intelligence Tool structures all contracts data from 
www.fpds.gov. The CIT includes a model of government 
spending on artificial intelligence-related contracts that is 
based on a combination of government-defined product 
service codes and more than 100 AI-related keywords. 
For the section “U.S. Government Contract Spending,” 
Bloomberg Government analysts used contract spending 
data from fiscal year 2000 through fiscal year 2021.

Defense RDT&E Budget: Bloomberg Government 
organized all the RDT&E budget request line items 
available from the Defense Department Comptroller. For 
the section “U.S. Department of Defense (DOD) Budget,” 
Bloomberg Government used a set of AI-specific keywords 
to identify 500 unique budget activities related to artificial 
intelligence and machine learning worth a combined $5.9 
billion in FY 2021.

Legislative Documents: Bloomberg Government 
maintains a repository of congressional documents, 
including bills, Congressional Budget Office assessments, 
and reports published by congressional committees, 
the Congressional Research Service, and other offices. 
Bloomberg Government also ingests state legislative 
bills. For the section “AI Policy and Governance,” 
Bloomberg Government analysts identified all legislation, 
congressional committee reports, and CRS reports that 
referenced one or more AI-specific keywords.

CHAPTER 5: AI POLICY  
AND GOVERNANCE

https://about.bgov.com/
http://www.fpds.gov
https://comptroller.defense.gov/Budget-Materials/
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GLOBAL LEGISLATION RECORDS ON AI
For AI-related bills passed into laws, the AI Index performed searches of the keyword “artificial intelligence,” in respective 
languages, on the websites of 25 countries’ congresses or parliaments, in full-text of bills. Note that only laws passed 
by state-level legislative bodies and signed into law (i.e., by presidents or received royal assent) from 2015 to 2021 are 
included. Future AI Index reports hope to include analysis on other types of legal documents, such as regulations and 
standards, adopted by state- or supranational-level legislative bodies, government agencies, etc.

Australia
Website: www.legislation.gov.au 
Keyword: artificial Intelligence
Filters: 
 • Legislation types: Acts
 •  Portfolios: Department of House of Representatives, 

Department of Senate
Note: Texts in explanatory memorandum are not counted.

Belgium
Website: http://www.ejustice.just.fgov.be/loi/loi.htm  
Keyword: intelligence artificielle

Brazil
Website: https://www.camara.leg.br/legislacao  
Keyword: inteligência artificial
Filter:
 • Federal legislation
 • Type: Law

Canada
Website: https://www.parl.ca/legisinfo/ 
Keyword: artificial Intelligence
Note: Results were investigated to determine how many of 
the bills introduced were eventually passed (i.e., received 
royal assent) and bill status was recorded.

China
Website: https://flk.npc.gov.cn/  
Keyword: 人工智能
Filters: 
 •  Legislative body: Standing Committee of the 

National People’s Congress

Denmark
Website: https://www.retsinformation.dk/ 
Keyword: kunstig intelligen
Filter:
 • Document Type: Laws

Finland
Website: https://www.finlex.fi/
Keyword: tekoäly 
Noting under the Current Legislation section

France 
Website: https://www.legifrance.gouv.fr/ 
Keyword: intelligence artificielle
Filter: 
 • texte consolidé
 • Document Type: Law

Germany
Website: http://www.gesetze-im-internet.de/index.html 
Keyword: künstliche Intelligenz
Filter: 
 •  All federal codes, statutes, and ordinances that are 

currently in force
 •  Volltextsuche (full text)
 •  Und-Verknüpfung der Wörter (entire word)

India 
Website: https://www.indiacode.nic.in 
Keyword: artificial intelligence
Note: The website used allows for a search of keywords 
in legalization title but not in the full text, as such it is not 
useful for this particular research. Therefore, a Google 
search using the “site” function to search the site with the 
keyword of “artificial intelligence” is conducted.

http://www.legislation.gov.au
http://www.ejustice.just.fgov.be/loi/loi.htm
https://www.camara.leg.br/legislacao
https://www.parl.ca/legisinfo/
https://flk.npc.gov.cn/
https://www.retsinformation.dk/
https://www.finlex.fi/
https://www.legifrance.gouv.fr/
http://www.gesetze-im-internet.de/index.html
http://www.indiacode.nic.in
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Ireland
Website: www.irishstatutebook.ie
Keyword: artificial intelligence

Italy
Website: https://www.normattiva.it/
Keyword: intelligenza artificiale
Filter: 
 •  Document Type: law

Japan
Website: https://elaws.e-gov.go.jp/
Keyword: 人工知能
Filter:
 •  Full text
 •  Law

Netherlands
Website: https://www.overheid.nl/ 
Keyword: kunstmatige intelligentie
Filter:
 •  Document Type: Wetten

New Zealand
Website: www.legislation.govt.nz
Keyword: Artificial intelligence
Filter: 
 •  Document type: acts
 •  Status option: For the status option (example: acts in 

force, current bills, etc.) 

Norway
Website: https://lovdata.no/
Keyword: kunstig intelligens

Russia
Website: http://graph.garant.ru:8080/SESSION/PILOT/
main.htm (Database “The Federal Laws” in the official 
website of the Federation Council of the Federal Assembly 
of the Russian Federation.)
Keyword: искусственный интеллект
Filter:
 •  Words in text

Singapore
Website: https://sso.agc.gov.sg/
Keyword: artificial intelligence
Filter: 
 •  Document Type: Current acts and subsidiary 

legislation

South Africa
Website: www.gov.za
Keyword: artificial intelligence
Filter: 
 •  Document: acts
Note: This search function seemingly does not search 
within the context of the full text and so no results were 
returned. Therefore, a Google search using the “site” 
function to search the site with the keyword of “artificial 
intelligence” is conducted. 

South Korea
Website: https://law.go.kr/eng/; https://elaw.klri.re.kr/
Keyword: artificial Intelligence or 인공 지능
Filter:
 •  Type: Act 
Note: Cannot search combined words, so individual 
analysis is conducted. 

Spain 
Website: https://www.boe.es/ 
Keyword: inteligencia artificial
Filter:
 •  Type: law
 •  Head of state (for passed laws)

Sweden
Website: https://www.riksdagen.se/
Keyword: artificiell intelligens
Filter: Swedish Code of Statutes

http://www.irishstatutebook.ie
https://www.normattiva.it/
https://elaws.e-gov.go.jp/
https://www.overheid.nl/
http://www.legislation.govt.nz
https://lovdata.no/
http://graph.garant.ru:8080/SESSION/PILOT/main.htm
http://graph.garant.ru:8080/SESSION/PILOT/main.htm
https://sso.agc.gov.sg/
http://www.gov.za
https://law.go.kr/eng/
https://elaw.klri.re.kr/
https://www.boe.es/
https://www.riksdagen.se/
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Switzerland
Website: https://www.fedlex.admin.ch/ 
Keyword: intelligence artificielle
Filter: 
 •  Text category: federal constitution, federal acts, and 

federal decrees, miscellaneous texts, orders, and 
other forms of legislation.

 •  Publication period for legislation was limited to 2015-
2021.  

United Kingdom
Website: https://www.legislation.gov.uk/
Keyword: artificial intelligence
Filter:
 •  Legislation Type: U.K. Public General Acts & U.K. 

Statutory Instruments

United States
Website: https://www.congress.gov/ 
Keyword: artificial intelligence
Filter:
 •  Source: Legislation
Status of legislation: Became law

https://www.fedlex.admin.ch/
https://www.legislation.gov.uk/
https://www.congress.gov/
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Australia
Website: https://www.aph.gov.au/Parliamentary_
Business/Hansard 
Keyword: artificial intelligence

Belgium
Website: http://www.parlement.brussels/search_form_fr/ 
Keyword: intelligence artificielle
Filter
 • Document Type: all

Brazil
Website: https://www2.camara.leg.br/atividade-
legislativa/discursos-e-notas-taquigraficas  
Keyword: inteligência artificial
Filter:
 • Federal legislation
 • Type: Law

Canada
Website: https://www.ourcommons.ca/PublicationSearch/
en/?PubType=37 
Keyword: artificial Intelligence

China
Website: Various reports on the work of the government
Keyword: 人工智能
Note: The National People’s Congress is held once per 
year and does not provide full legislative proceedings. 
Hence, the counts included in the analysis only searched 
the mentions of artificial intelligence in the only public 
document released from the Congress meetings, the 
Report on the Work of the Government, delivered by the 
Premier. 

Denmark
Website: https://www.retsinformation.dk/ 
Keyword: kunstig intelligens
Filter:
 • Minutes

Finland
Website: https://www.eduskunta.fi/ 
Keyword: tiedot
Filter:
 • Parliamentary Affairs and Documents
 • Public document: Minutes
 • Actor: Plenary sessions

France 
Website: https://www.assemblee-nationale.fr/ 
Keyword: intelligence artificielle
Filter: 
 • Reports of the debates in session
Note: Such documents were only prepared starting in 
2017.

Germany
Website: https://dip.bundestag.de/ 
Keyword: künstliche Intelligenz
Filter: 
 • Speeches, requests to speak in the plenum

India 
Website: http://loksabhaph.nic.in/ 
Keyword: artificial intelligence
Filter:
 • Exact word/phrase

Ireland
Website: https://www.oireachtas.ie/ 
Keyword: artificial intelligence
Filter: Content of parliamentary debates

MENTIONS OF AI  IN AI-RELATED LEGISLATION PROCEEDINGS
For mentions of AI in AI-related legislative proceedings around the world, the AI Index performed searches of the keyword 
“artificial intelligence,” in respective languages, on the websites of 25 countries’ congresses or parliaments, usually under 
sections named “minutes,” “hansard,” etc.

https://www.aph.gov.au/Parliamentary_Business/Hansard
https://www.aph.gov.au/Parliamentary_Business/Hansard
http://www.parlement.brussels/search_form_fr/
https://www2.camara.leg.br/atividade-legislativa/discursos-e-notas-taquigraficas
https://www2.camara.leg.br/atividade-legislativa/discursos-e-notas-taquigraficas
https://www.ourcommons.ca/PublicationSearch/en/?PubType=37
https://www.ourcommons.ca/PublicationSearch/en/?PubType=37
https://www.retsinformation.dk/
https://www.eduskunta.fi/
https://www.assemblee-nationale.fr/
https://dip.bundestag.de/
http://loksabhaph.nic.in/
https://www.oireachtas.ie/
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Italy
Website: https://aic.camera.it/aic/search.html 
Keyword: intelligenza artificiale
Filter: 
 • Type: All
 • Search by exact phrase

Japan
Website: https://kokkai.ndl.go.jp/#/  
Keyword: 人工知能
Filter:
 • Full text
 • Law

Netherlands
Website: https://www.tweedekamer.nl/kamerstukken?pk_
campaign=breadcrumb  
Keyword: kunstmatige intelligentie
Filter:
 • Parliamentary papers - Plenary reports

New Zealand
Website: https://www.parliament.nz/en/pb/hansard-
debates/  
Keyword: artificial intelligence 

Norway
Website: https://www.stortinget.no/no/Saker-og-
publikasjoner/Publikasjoner/Referater/ 
Keyword: kunstig intelligens
Note: This search function does not directly allow the 
keyword within minutes. Therefore, a Google search using 
the “site” function to search the site with the keyword of 
“artificial intelligence” is conducted. 

Russia
Website: http://transcript.duma.gov.ru/ 
Keyword: искусственный интеллект
Filter:
 • Words in text

Singapore
Website: https://sprs.parl.gov.sg/search/home 
Keyword: artificial intelligence

South Africa
Website: https://www.parliament.gov.za/hansard 
Keyword: artificial intelligence
Note: This search function does not search within the 
context of the full text and so no results were returned. 
Therefore, a Google search using the “site” function 
to search https://www.parliament.gov.za/storage/
app/media/Docs/hansard/ with the keyword “artificial 
intelligence” is conducted. 

South Korea
Website: http://likms.assembly.go.kr/ 
Keyword: 인공 지능
Filter:
 • Meeting Type: All

Spain 
Website: https://www.congreso.es/ 
Keyword: inteligencia artificial
Filter:
 • Official publications of parliamentary proceedings

Switzerland
Website: https://www.parlament.ch/ 
Keyword: intelligence artificielle
Filter: 
 • Parliamentary proceedings

Sweden
Website: https://www.riksdagen.se/sv/global/
sok/?q=&doktyp=prot
Keyword: artificiell intelligens
Filter:
 • Minutes

https://aic.camera.it/aic/search.html
https://kokkai.ndl.go.jp/#/
https://www.tweedekamer.nl/kamerstukken?pk_campaign=breadcrumb
https://www.tweedekamer.nl/kamerstukken?pk_campaign=breadcrumb
https://www.parliament.nz/en/pb/hansard-debates/
https://www.parliament.nz/en/pb/hansard-debates/
https://www.stortinget.no/no/Saker-og-publikasjoner/Publikasjoner/Referater/
https://www.stortinget.no/no/Saker-og-publikasjoner/Publikasjoner/Referater/
http://transcript.duma.gov.ru/
https://sprs.parl.gov.sg/search/home
https://www.parliament.gov.za/hansard
https://www.parliament.gov.za/storage/app/media/Docs/hansard/
https://www.parliament.gov.za/storage/app/media/Docs/hansard/
http://likms.assembly.go.kr/
https://www.congreso.es/
https://www.parlament.ch/
https://www.riksdagen.se/sv/global/sok/?q=&doktyp=prot
https://www.riksdagen.se/sv/global/sok/?q=&doktyp=prot
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United Kingdom
https://hansard.parliament.uk/ 
Keyword: artificial intelligence
Filter
 • References

United States
Website: https://www.congress.gov/ 
Keyword: artificial intelligence
Filter:
 • Source: Congressional record
 •  Congressional record section: Senate, House of 

Representatives, and Extensions of Remarks

U.S. AI  POLICY PAPERS
Organizations
To develop a more nuanced understanding of the thought 
leadership that motivates AI policy, we tracked policy 
papers published by 55 organizations in the United States 
or with a strong presence in the United States (expanded 
from the list of 36 organizations last year) across four 
broad categories: 
 •  Civil Society, Associations & Consortiums: 

Algorithmic Justice League, Alliance for Artificial 
Intelligence in Healthcare, Amnesty International, 
EFF, Future of Privacy Forum, Human Rights Watch, 
IJIS Institute, Institute for Electrical and Electronics 
Engineers, Partnership on AI

 •  Consultancy: Accenture, Bain & Company, Boston 
Consulting Group, Deloitte, McKinsey & Company

 •  Government Agencies: Congressional Research 
Service, Library of Congress, Defense Technical 
Information Center, Government Accountability 
Office, Pentagon Library

 •  Private Sector Companies: Google AI, Microsoft AI, 
Nvidia, OpenAI

 •  Think Tanks & Policy Institutes: American Enterprise 
Institute, Aspen Institute, Atlantic Council, Brookings 
Institute, Carnegie Endowment for International 
Peace, Cato Institute, Center for a New American 
Security, Center for Strategic and International 

Studies, Council on Foreign Relations, Heritage 
Foundation, Hudson Institute, MacroPolo, National 
Security Institute, New America Foundation, RAND 
Corporation, Rockefeller Foundation, Stimson 
Center, Urban Institute, Wilson Center

 •  University Institutes & Research Programs: AI and 
Humanity Cornell University; AI Now Institute, New 
York University; AI Pulse, UCLA Law; Belfer Center for 
Science and International Affairs, Harvard University; 
Berkman Klein Center, Harvard University; Center for 
Information Technology Policy, Princeton University; 
Center for Long-Term Cybersecurity, UC Berkeley; 
Center for Security and Emerging Technology, 
Georgetown University; CITRUS Policy Lab, UC 
Berkeley; Hoover Institution; Institute for Human-
Centered Artificial Intelligence, Stanford University; 
Internet Policy Research Initiative, Massachusetts 
Institute of Technology; MIT Lincoln Laboratory; 
Princeton School of Public and International Affairs

Methodology
Each broad topic area is based on a collection of 
underlying keywords that describe the content of the 
specific paper. We included 17 topics that represented the 
majority of discourse related to AI between 2018-2021. 
These topic areas and the associated keywords are listed 
below:
 •  Health & Biological Sciences: medicine, healthcare 

systems, drug discovery, care, biomedical research, 
insurance, health behaviors, COVID-19, global health

 •  Physical Sciences: chemistry, physics, astronomy, 
earth science

 •  Energy & Environment: energy costs, climate change, 
energy markets, pollution, conservation, oil and gas, 
alternative energy

 •  International Affairs & International Security: 
international relations, international trade, 
developing countries, humanitarian assistance, 
warfare, regional security, national security, 
autonomous weapons

 •  Justice & Law Enforcement: civil justice, criminal 
justice, social justice, police, public safety, courts

https://hansard.parliament.uk/
https://www.congress.gov/
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 •  Communications & Media: social media, 
disinformation, media markets, deepfakes

 •  Government & Public Administration: federal 
government, state government, local government, 
public sector efficiency, public sector effectiveness, 
government services, government benefits, 
government programs, public works, public 
transportation

 •  Democracy: elections, rights, freedoms, liberties, 
personal freedoms

 •  Industry & Regulation: economy, antitrust, M&A, 
competition, finance, management, supply chain, 
telecom, economic regulation, technical standards, 
autonomous vehicle industry and regulation

 •  Innovation & Technology: advancements and 
improvements in AI technology, R&D, intellectual 
property, patents, entrepreneurship, innovation 
ecosystems, startups, computer science, engineering

 •  Education & Skills: early childhood, K-12, higher 
education, STEM, schools, classrooms, reskilling

 •  Workforce & Labor: labor supply and demand, talent, 
immigration, migration, personnel economics, future 
of work

 •  Social & Behavioral Sciences: sociology, linguistics, 
anthropology, ethnic studies, demography, 
geography, psychology, cognitive science

 •  Humanities: arts, music, literature, language, 
performance, theater, classics, history, philosophy, 
religion, cultural studies

 •  Equity & Inclusion: biases, discrimination, gender, 
race, socioeconomic inequality, disabilities, 
vulnerable populations

 •  Privacy, Safety & Security: anonymity, GDPR, 
consumer protection, physical safety, human 
control, cybersecurity, encryption, hacking

 •  Ethics: transparency, accountability, human 
values, human rights, sustainability, explainability, 
interpretability, decision-making norms
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