
Algorithms

Author(s): Donald E. Knuth

Source: Scientific American , Vol. 236, No. 4 (April 1977), pp. 63-81

Published by: Scientific American, a division of Nature America, Inc.

Stable URL: https://www.jstor.org/stable/10.2307/24953982

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

Scientific American, a division of Nature America, Inc. is collaborating with JSTOR to digitize,
preserve and extend access to Scientific American

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/10.2307/24953982

Algorithms
An algorithm is a set of rules for getting a specific output from
a specific input. Each step must be so precisely defined it can
be translated into computer language and executed by machine

Ten years ago the word "algorithm"
was tmknown to most educated
people; indeed, it was scarcely

necessary, The rapid rise of computer
science, which has the study of algo­
rithms as its focal point, has changed all
that; the word is now essential. There
are several other words that almost, but
not quite, capture the concept that is
needed: procedure, recipe, process, rou­
tine, method, rigmarole. Like these
things an algorithm is a set of rules or
directions for getting a specific output
from a specific input. The distinguishing
feature of an algorithm is that all vague­
ness must be eliminateq; the rules must
describe operations that are so simple
and well defined they can be executed by
a machine. Furthermore, an algorithm
must always terminate after a finite
number of steps.

A program is the statement of an al­
gorithm in some well-defined language.
Thus a computer program represents an
algorithm, although the algorithm itself
is a mental concept that exists indepen­
dently of any representation. In a simi­
lar way the concept of the number 2
exists in our minds without being writ­
ten down. Anyone who has prepared a
computer program will appreciate the
fact that an algorithm must be very pre­
cisely defined, with an attention to detail
that is unusual in comparison with the
other things people do.

Programs for numerical problems
were written as early as 1 800 B.C., when
Babylonian mathematicians at the time
of Hammurabi gave rules for solving
many types of equations. The rules were
stated as step-by-step procedures ap­
plied systematically to particular nu­
merical examples. The word algorithm
itself originated in the Middle East, al­
though at a much later time. It comes
from the last name of the Persian schol­
ar Abu Ja'far Mohammed ibn Musa al­
Khowarizml. whose textbook on arith­
metic (about A.D. 825) had a significant
influence for many centuries.

Traditionally algorithms were con­
cerned solely with numerical calcula­
tion. Experience with computers has
shown, however, that the data manipu-

by Donald E. Knuth

lated by programs can represent virtual­
ly anything. Accordingly the emphasis
in computer science has now shifted to
the study of various structures by which
information can be represented, and to
the branching, or decision-making, as­
pects of algorithms, which allow them
to follow one or another sequence of
operations depending on the state of af­
fairs at the time. It is precisely these fea­
tures of algorithms that sometimes
make algorithmic models more suitable
than traditional mathematical models
for the representation and organization
of knowledge. Although numerical al­
gorithms certainly have many interest­
ing features, I shall confine the follow­
ing discussion to non-numerical ones in
order to emphasize the fact that algo­
rithms deal primarily with the manipu­
lation of symbols that need not repre­
sent numbers.

Searching a Computer's Memory

In order to illustrate how algorithms
can fruitfully be studied, I shall consider
in some depth a simple problem of re­
trieving information. The problem is to
discover whether or not a certain word,
x, appears in a table of words stored in a
computer's memory. The word x might
be the name of a person, the number of a
mechanical part, a word in some foreign
language, a chemical compound, a cred­
it-card number or almost anything. The
problem is interesting only when the set
of all possible x's is too large for the
computer to handle all at once; other­
wise one could simply set aside one loca­
tion in the memory for each word.

Suppose n different words have been
stored in the computer's memory. The
problem is to design an algorithm that
will accept as its input the word x and
will yield as its output the location j
where x appears. Thus the output will be
a number between 1 and n, if x is pres­
ent; on the other hand, if x is not in the
memory, the output should be 0, indi­
cating that the search was unsuccessful.

It is, of course, easy to solve this prob­
lem. The simplest algorithm is to store
the words in locations 1 through n and to

look at each word in turn. If x is found in
locationj, the computer should outputj
and stop, but if the computer exhausts
all n possibilities with no success, it
should output 0 and stop. Such a de­
scription of the search strategy is proba­
bly not precise enough for a computer,
however, and so the procedure should
be stated more carefully. It might be
written as a sequence of steps in the fol­
lowing way:

Algorithm A; sequential search.
A 1 . [Initialize.] Set j � n. (The arrow

here means that the value of variable j is
set equal to n, the number of words in
the table to be searched. This is the ini­
tial value of j. Subsequent steps of the
algorithm will causej to run through the
sequences of values n, (n - 1), (n - 2)
and so on until it reaches either 0 or a
location containing the input word x.)

A2. [Unsuccessful?] If j = 0, output j
and terminate the algorithm. (Otherwise
go on to step A3.)

A3. [Successful?] If x = KEYU], out­
put j and terminate the algorithm. (The
term KEYU] refers to the word stored at
location j.)

A4. [Repeat.] Set j � j - 1 (decrease
the value of j by 1) and go back to
step A2.

This algorithm can be depicted by a
flow chart that may help a person to
visualize the steps [see illustration on
page 65]. One reason it is important to
specify the steps carefully is that the al­
gorithm must work in every case. For
example, the informal description given
first might have suggested an erroneous
algorithm that would go directly from
step A 1 to step A3; such an algorithm
would have failed when n = 0 (that is,
when no words at all were present),
since step A 1 would set j to 0 and step
A3 would refer to the nonexistent
KEY[O].

It is interesting to note that Algorithm
A can be improved by giving meaning to
the notation KEY[O], allowing a word to
be stored in "location 0" as well as in
locations 1 through n. Then if step Al
sets KEY[O] � x as well as j � n, step A2

63

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

can be eliminated and the search will go
about 20 percent faster on many ma­
chines. Unfortunately for program­
mers, the most commonly used comput­
er languages (standard FORTRAN and co­
BOL) do not allow 0 to be employed as an
index for a memory location; thus Algo­
rithm A cannot be so easily improved
when it is expressed as a program in
those languages.

Algorithm A certainly solves the
problem of searching through a table of
words, but the solution is not very good
unless the number of words to be
searched is quite small, say 2 5 or fewer.
If n were as large as a million, a simple
sequential search would usually be an
unbearably slow way to look through

the table. We would hardly go to the
expense of building such a large table
unless we expected to search it freq uent­
ly, and we would not want to waste any
time during the search. Algorithm A is
the equivalent of looking for someone's
telephone number by going through a
telephone directory page by page, col­
umn by column, one line at a time. We
can do better than that.

The Advantage of Order

It is, in fact, instructive to consider a
telephone directory as an example of
such a large table of information. If one
were asked to find the telephone number
of someone who lives at 1 642 East 5 6th

Street, there would really be no better
way than to do a sequential search
equivalent to Algorithm A. since a stan­
dard telephone directory is not orga­
nized for searches according to address.
On the other hand, when one looks up
someone's name, it is possible to take
advantage of alphabetical order. Alpha­
betical order is a substantial advantage
indeed, since a single glance at almost
any point in the directory suffices to
eliminate many names from further
consideration.

If the words of a table appear consis­
tently in some order, there are several
ways to design an efficient search proce­
dure. The simplest procedure starts by
looking first at the entry in the middle of

OUTPUT: [TI]

OUTPUT:@]
SEQUENTIAL-SEARCH ALGORITHM (Algorithm A in the text
of this article) looks for an input word in a table where the entries
have not been arranged in any particular order. This table has 25 en­
tries, or keys: KEY[I], KEY [2] and so on up to KEY[25]. Each key
is a person's name. Suppose the input word is the name "Grant". AI-

gorithm A searches for "Grant" by comparing it first with KEY[25],
which is "Wilson", then with KEY[24], which is "Taft", and so on.
Here "Grant" is found to be KEY [17], so that the algorithm outputs
"17" (top). If input had been "Gibbs", Algorithm A would have com­
pared "Gibbs" with all keys and output would have been 0 (bottom).

64

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

the table. If the desired word x is numer­
ically or alphabetically less than this
middle entry . the entire second half of
the table can be eliminated; similarly . if
x is greater than the middle entry. one
can eliminate the entire first half. Thus a
single comparison yields a search prob­
lem that is only half as large as the origi­
nal one. The same technique can now be
applied to the remaining half of the ta­
ble. and so on until the desired word x is
either located or proved to be absent.
This procedure is commonly known as a
binary search.

Although the ideas underlying binary
search are simple. some care is neces­
sary in writing the algorithm. First. in a
table that has an even number of ele­
ments there is no unique "middle" entry.
Second. it is not immediately clear when
to stop in the case of an unsuccessful
search. Teachers of computer science
have noticed. in fact. that when students
are asked to write a binary-search proce­
dure for the first time. about 80 percent
of them get the program wrong. even
when they have had more than a year of
programming experience! The reader
who feels that he understands algo­
rithms fairly well but has never before
written a binary-search algorithm might
enjoy trying to construct one before
reading the following solution.

Algorithm B; binary search. This al­
gorithm employs the same notation as
Algorithm A. Moreover. it is assumed
that the first word. KEY[l]. is less than
the second word. KEY[2]. which is less
than the third word. KEY[3]. and so on
all the way up to the last word. KEY[n].
This condition can be written KEY[I]
< KEY[2] < KEY[3] < ... < KEY[n].

B 1 . [Initialize.] Set I�O. r�n + I.
(The letter 1 stands for the left boundary
of the search and r stands for the right
boundary. More precisely . KEYI.!'J can­
not match the given word x unless the
location j is both greater than 1 and less
than r.)

B2. [Find midpoint.] Set j � L(l + r) /
2]. (The brackets l J mean "Round down
to the nearest integer." Thus if (l + r) is
even. j is set to (l + r)12 : if (l + r) is odd.
j is set to (l + r - 1)12.)

B3. [Unsuccessful?] If j = t. output 0
and terminate the algorithm. (If j eq uals
t, then r must be equal to t + 1. since r is
always greater than I; therefore x cannot
match any key in the table.)

B4. [Compare.] (At this point j > t
and j < r.) If x = KEYl.!l output j and
terminate the algorithm. If x < KEY[j].
set r� j and return to step B2. If
x > KEY[j]. set t � j and return to step
B2.

A play-by-play account of Algorithm
B as it searches through a table of 25
names is shown in the illustration on the
next page.

It seems clear that binary search (Al­
gorithm B) is much better than sequen-

1
.--------?

?

_V E_S 1
� YES �-------7I,--

__

.
_

O_U_T
,
P_U_T_j

__ --, ,°1
A4. j<-j-l I

STOP

FLOW CHART FOR ALGORITHM A illustrates the logical path by which the brute-force
sequential search looks for an input word x in a table of n keys. The algorithm searches for x by
comparing it first with KEY[n], then with KEY[n - 1], then with KEY[n - 2] and so on. If x
matches some KEY[;], the algorithm outputsj, the location at which x was found. If x is not in
the table, the output of the algorithm is O. Arrow in step Al (j�n) means "Setj equal to n" in
that step. Step in each box is explained in detail in the fuller form of Algorithm A in third col­
umn of text on page 63. On the average Algorithm A must search half of the table to find x. In
the worst case, if x is at KEY [I] or if x is not present, Algorithm A must search the entire table.

tial search (Algorithm A). but how
much better is it? And when is it better?
A quantitative analysis will answer
these questions.

Quantitative Analysis

First let us analyze the worst cases of
algorithms A and B. How long can it
possibly take each algorithm to find
word x in a table of size n? The answer
is easy for Algorithm A. If x equals
KEY[l]. or if x is not in the table at all. it
will take II executions of step A3; that is.
the desired word x must be compared
with all II entries in the table before the
search stops. Furthermore. the algo­
rithm will never execute step A3 more
than II times. When sequential search is
applied to a table with a million entries,
a million comparisons will be made in
the worst case.

The answer is only slightly more diffi­
cult for binary search. Since Algorithm
B discards half of the table remaining
after each execution of step B4, it first
deals with the entire table, then half of
the table. then a quarter of the table,
then an eighth of the table and so on.
The maximum number of executions of

step B4 will be k. where k is the smallest
integer such that 2k is greater than II. For
example, when binary search is applied
to a table with a million (106) entries, k
will be equal to 20. since 220 is greater
than 106 but 106 is greater than 219. Thus
if a table with 106 entries is searched
using Algorithm B. at most only 20 of
those entries will ever be examined in
any particular search.

From the standpoint of worst-case be­
havior , one can go further and say that
Algorithm B is not only a good way to
search; it is actually the best possible
search algorithm that proceeds solely by
comparing x to keys in the table. The
reason is that a comparison-based algo­
rithm cannot possibly examine more
than 2k - 1 different keys during its first
k comparisons. No matter what strategy
is adopted. the first comparison always
selects a particular key of the table and
the second comparison will be with at
most two other keys (depending on
whether x was less than or greater than
the first key); the third comparison will
be with at most four other keys ; the
fourth comparison will be with at most
eight other keys, and so on. Therefore if
a comparison-based search algorithm

65

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

makes no more than k comparisons. the
table can contain no more than
1 + 2 + 4 + 8 + . . . + 2k -1 distinct keys.
and this sum equals 2k - 1 .

The familiar game of Twenty Ques­
tions can be analyzed by reasoning in a
similar way. In this game one player
thinks of a secret object. the name of
which he conceals on a folded piece of
paper. The other players try to guess
what the object is by asking as many as
20 questions that must be answered only
by "Yes" or "No." The other players are
also initially told whether the secret ob­
ject is animal. vegetable or mineral. or a
combination of those supposedly well­
defined attributes. By arguing as I have
in the preceding paragraph. one can
prove that the other players cannot pos­
sibly identify more than 223 different ob­
jects correctly . no matter how clever
their questions are. There are only 23 (or
e ight) possible subsets of the set of at­
tributes animal. vegetable and mineral.
and there are only 220 possible outcomes
of the 20 yes-no questions. Thus the to­
tal number of objects one can possibly

INPUT: I x = GRANT I

identify is 2 23. The argumcnt holds cven
when each question asked dcpends on
the answers to the preceding qucstions.

Stating this conclusion another way. if
more than 223 different objects fiust be
identified . 20 questions will not always
be enough. The search problem is simi­
lar but not quite the same, since an algo­
rithm for searching does not simply ask
yes-no questions. The questions asked
by algorithms of the type we are consid­
ering have three possible outcomes.
namely x < KEY[j] or x = KEY[j] or
x > KEYlJl When a table contains 2k
or more entries. the above reasoning
proves that k comparisons of x with keys
in the table will not always be enough.
Therefore every algorithm that searches
a table of a million words by making
comparisons must in some instances ex­
amine 20 or more of those words. In
short, binary search has the best possible
worst case.

The worst-case behavior of an algo­
rithm is not the whole story, since it is
overly pessimistic to base decisions en­
tirely on one's knowledge of the worst

that can happen. A more meaningful
understanding of the relative merits of
algorithms A and B can be gaincd by
analyzing their average-case behavior.
If each of the n keys in a table is eq ually
likely to be looked up. what is the aver­
age number of comparisons that will be
needed? For sequential search (Algo·
rithm A) the answer is the simple aver­
age (l + 2 + 3 + ... + n)l n. which is
equal to (II + 1) /2. In other words. to
find x with Algorithm A one will on the
average have to search through about
half of the table. To determine the aver­
age number of comparisons needed to
find x using binary search (Algorithm
B). the mathematics is only a little more
complicated. In this case the answer
is k - [(2k - k - 1)/11]. where k. as be­
fore, is the number of comparisons re­
quired in the worst case. For large val­
ues of II this answer is approximately
equal to k - 1; therefore the average
case of Algorithm B is only about one
comparison less than its worst case. By
carefully extending the argument made
earlier it is possible to show that binary

BINARY-SEARCH ALGORITHM (Algorithm B in the text) is a
substantial improvement over the sequential-search algorithm when
the table to be searched is large. The entries in the table must first be
arranged in order. Here the 2S names are listed in alphabetical order.
Again the input word x sought is "Grant". The algorithm compares
"Grant" first with the key in the middle location, j, of the table. It cal­
culates the initial value of j by setting the left boundary I of the search
at 0 and the right boundary r at n + 1. In this case r is 26. Then I and
r are added together and divided by 2, rounding down to the nearest
integer if the answer is not already an integer. The midpoint j of the
table is 26/2, or 13, which is the location of "Lincoln" (top). Since the
name "Grant" is alphabetically less than "Lincoln", the algorithm dis-

cards the entire right half of the table, containing all names alphabeti­
cally greater than or equal to "Lincoln". For the remaining half of
the table the algorithm calculates a new midpoint, first setting r equal
to the location j just examined, which is 13 (second from top). The
new midpointj is (0 + 13)12, which must be rounded down to 6, loca­
tion of "Garfield". "Grant" is alphabetically greater than "Garfield",
so that the left quarter of the table is discarded and the left boundary I
is set equal to 6 (second from bottom). When procedure is repeated
once more, "Grant", is found in position 7 (bottom). If input word x
had been "Gibbs", Algorithm B would have executed one more step,
with I still equal to 6 and r set at 7. Midpoint j would have been 6,
which is left boundary of search, meaning that "Gibbs" is not in table.

66

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

The legend continues ...

Introducing the world's most
sophisticated Diesel passenger car.

The new Mercedes--Benz 300D.

The new, 5-passenger Mercedes-Benz 3000 - the state of the Diesel passenger car an.

Here is a most ingenious alternative to the conven­
tional automobile. A truly remarkable new Mercedes­
Benz. With a contemporary new look. With ample room
for five people, an astonishing 5-cylinder engine and

an unusually complete array of luxurious appointments and safety sys­
tems. The new 3000. The most sophisticated Diesel passenger car the
world has ever seen.

For years, you've heard about
exotic and promising alternatives to
the conventional automobile engine.
To date, only one alternative has kept
its promise: the Diesel engine-for
over 60 years, the most efficient com­
bustion power plant in use.

Now Mercedes-Benz has synthe­
sized its proven, 5-cylinder Diesel
engine with new, technologically ad­
vanced body design, suspension, steer­
ing and safety systems to produce the
most ingenious alternative to the con­
ventional automobile.

A matter of taste

Though only a trim 190.9 inches from
bumper to bumper, the new 300D is
an honest 5-passenger sedan. The
secret of its spaciousness lies in new
Mercedes-Benz technology that puts
the room in the car in the car-with-

out adding bulk or sacrificing safety.
Enter a new 300D and you're sur­

rounded by a complete array of security
and convenience features. All are
standard equipment. Such things as
cruise control, bi-level climate con­
trol, electric windows, AM/FM radio,
central locking system, 3-speed wind­
shield wipers.

The new 300D is not an exercise
in opulence. But it does exhibit meticu­
lous taste. And as your senses will tell
you, there's quite a difference between
the two ideas.

Sports car handling

T he new 300D is one of the most
sparkling road cars Mercedes-Benz has
ever engineered. I ts sophisticated
power train, suspension and steering
are those of a spOrts car. And that is
why the new 300D handles like one.

The new 300D's unique,5-cylinder
engine is the most powerful, the
smoothest Diesel yet engineered into
a passenger car. But you pay no penalty
for this performance bonus. The EPA
estimates that the new 300D should
deliver up to 28 mpg on the highway,
23 mpg in town. (Your mileage will
depend on how and where you drive
and the condition and equipment of
your car.)

The state of the art

For over 40 years, Mercedes-Benz has
pioneered many of the major advances
in Diesel passenger car engineering.
The new 300D is the culmination of
that experience. It is the state of the
Diesel passenger car art.

Test drive the new 300D. Experi­
ence the most ingenious alternative to
the conventional automobile. The
most sophisticated Diesel rI\
passenger car in the world. 'OJ
Mercedes.-Benz
Engineered like no other car

, in the world.
ClM.".dcs-IXnz.1977

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

The Small Computer
Twenty-five years ago a computer as powerful as the

new Processor Technology Sol-20 priced out at a cool million.
Now for only $995 in kit form or $1495 fully

assembled and tested you can have your own small computer
with perhaps even more power. It comes in a package about the
size of a typewriter. And there's nothing like it on the market
today. Not from mM, Burroughs, DEC, HP or anybody else!

It fills a new role
If you're an engineer, scientist or businessman, the

Sol-20 can help you solve many or all of your design problems,
help you quantify research, and handle the books too. For not
much more than the price of a good calculator, you can have high
level computer power.

Use it in the oHice, lab, plant or home
Sol-20 is a smart terminal for distributed processing.

Sol-20 is a stand alone computer for data collection, handling
and analysis. Sol-20 is a text editor. In fact, Sol-20 is the key
element of a full fledged computer system including hardware,
software and peripheral gear. It's a computer system with a
keyboard, extra memory, I/O interfaces, factory backup, service
notes, users group.

It's a computer you can take home after hours to play
or create sophisticated games, do your personal books and taxes,
and a whole host of other tasks.

Those of you who are familiar with small computers
will recognize what an advance the Sol-20 is.

Sol-20 offers all these features as standard:
8080 microprocessor-1024 character video display

circuitry -control PROM memory -1024 words of static low­
power RAM-1024 words of pre programmed PROM-built-in
cassette interface capable of controlling two recorders at 1200
bits per second -both parallel and serial standardized interface
connectors -a complete power supply including ultra quiet
fan -a beautiful case with solid walnut sides -software which
includes a preprogr ammed PROM personality module and a data
cassette with BASIC-5 language plus two sophisticated computer
video games-the ability to work with all S-IOO bus products.

Full expansion capability
Tailor the Sol-20 system to your applications with our

complete line of peripheral products. These include the video
monitor, audio cassette and digital tape systems, dual floppy
disc system, expansion memories, and interfaces.

Write for our new 22 page catalog.
Get all the details.

Processor Technology, Box N, 6200 Hollis St.,
Emeryville, CA 94608. (415) 652-8080.

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

search is also the best possible algorithm
from the standpoint of the average case:
every search algorithm must make at
least k - [(2k - k - 1) /n] comparisons
on the average. and many do worse.

Better than the Best

As soon as something has been proved
impossible .. a lot of people immediately
try to do it anyway. This seems to be an
inherent component of human behav­
ior. I have just proved that binary search
is the best possible way to search a com­
puter's memory. and so naturally I shall
now look for a better way.

In the first place. when the number of
words in a table is small. Algorithm A
actually turns out to be better than Al­
gorithm B. Why does this not contradict
the proof that binary search is best? The
reason is that in comparing Algorithm A
and Algorithm B I have so far been con­
trasting only the number of compari­
sons each algorithm makes. Actually
Algorithm A requires less bookkeeping
acti\lity. so that it takes less time for a
machine to execute each comparison.
On a typical computer Algorithm A can
be made to take about 2n + 6 units
of time. on the average. for a table of
size n. Algorithm B. on the other
hand. will require an average of about
1 210g2 n - 1 1 + 1 2(k + 1) /n units of
time. under the same assumptions. Thus
unless there are 20 or more keys to be
searched. Algorithm A will be better
than Algorithm B. These numbers will
vary slightly from computer" to comput­
er. but they show that the efficiency of
an algorithm cannot be determined by
counting only the comparisons made.

There is another reason Algorithm B
can be beaten. When we look up some­
one's name in a telephone directory and
compare the desired name x with the
names on a page. our subsequent action
is not influenced solely by whether the
comparison shows that the desired
name is alphabetically less than or
greater than the names on the page; we
also observe how much less than or how
much greater than. and we turn over a
larger chunk of pages if we think we are
farther from the goal. The above proof
that binary search is best does not apply
to algorithms that make use of such
things as the degree of difference be­
tween x and a particular key. The proof
for Twenty Questions can be attacked
on similar grounds. For example. the
players might notice the length of the
secret word as it is being written down.
or they might be able to gain informa­
tion from the length of time the player
being questioned hesitates before an­
swering "Yes" or "No."

Therefore a human being concerned
about efficiency need not begin search­
ing a telephone directory by bisecting it
as a computer would; the time-honored
method of interpolation with the aid of .
alphabetical order probably works bet-

STA RT

B1./�O.r<-nI-1

B2. j � l(I+r)/2j

1 <2>-----N-O----3>I '-- _ _
B4_._C_O_M_PA_R_E

_X _: K
_

E
,

Y
U

'
)_--/

YES

OUTPUT 0 OUTPUTj

1 STOP 1 �OP
FLOW CHART OF ALGORITHM B illustrates the rules governing binary search. The algo­
rithm searches for the input word x in a table of n keys that have previously been arranged in
order. First x is compared with the middle entry of the table. If x is greater than (>) the middle
entry, it is compared with the midpoint of the right half of the table. If x is less than (<) the mid­
dle entry, it is compared with the midpoint of the left half of the table. The process continues,
with half of the remaining table being discarded each time, until either x is found or the search
reveals that x is not in the table. The half brackets (L J) mean "Round down to the nearest inte­
ger." Like Algorithm A, Algorithm B is written out in detail in first column of text on page 65.

ter in spite of the proof that the binary
search is best. In fact. Andrew C. Yao
of the Massachusetts Institute of Tech­
nology and F. Frances Yao of Brown
University have recently shown that the
average number of times an interpola­
tion-search algorithm needs to access
the table is only log210g2 n plus at
most a small constant. provided that
the table entries ar� independent and
uniformly distributed random numbers.
When n is very large. log210g2 n is
much smaller than log2 n, so that inter­
polation search will be significantly fast­
er than binary search. The idea under­
lying the Yaos' proof is that each itera­
tion of an interpolation search tends to
reduce the uncertainty of the position
of x from n to the square root of n. Fur­
thermore. they have proved that inter­
polation search is nearly the best pos­
sible. in a very broad sense: any algo­
rithm that searches such a random table
by making appropriate comparisons
must examine approximately log210g2 n
entries. on the average.

These results are of great theoretical
importance. although computational
experience has shown that an interpola­
tion search is usually not an improve-

ment over binary search in practice. The
reason is that the data stored in a table
are typically not random enough to con­
form to the assumption of a uniform
distribution; in addition n is typically
small enough so that the extra calcula­
tion per comparison required by each
interpolation outweighs the amount of
time saved by reducing the number of
comparisons. The simplicity of binary
search is one of its virtues. and it is im­
portant to maintain a proper balance be­
tween theory and practice.

Binary Tree Search

The binary search can be improved.
however. in another way: by dropping
the assumption that every key in the ta­
ble is equally likely to be sought. When
some keys are known to be far more
likely candidates than others. an effi­
cient algorithm will examine the more
likely ones first.

Before we explore this notion it will
be helpful to look first at the binary
search in a different way. Consider the
3 1 words that are used most frequent­
ly in the English language (according
to Helen Fouche Gaines in her book

69

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

EIGHT SUBSETS
OF ANIMAL,
VEGETABLE,
MINERAL

QUESTION 1:
TWO ANSWERS

QUESTION 2:

/\ /\
i\ i\ i\ i\

ANIMAL, VEGETABLE,

MINERAL ANIMAL, VEGETABLE

/\ /\
i\ i\ i\ A

TWO ANSWERS YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
QUESTION 3:
TWO At>!SWERS

/\ /\
YES NO YES NO
1\ 1\ ('. 1\

/\ /\
YES NO YES NO
/\ /\ /\ 1\ .. "

/\ /\ /\ /\
YES NO YES NO YES NO YES NO
/\ /\ /\ 0. /\ ('. I'. 0.

/\ /\ /\ /\
YES NO YES NO YES NO YES NO
1\ i'. ('. 0. /\ ('. /\ !'.

/\ /\ /\ /\
YES NO YES NO YES NO YES N(
!'. !'. /\ ('. !'. !'. !'.

QUESTION 20:
TWO ANSWERS

. , . .

THE GAME TWENTY QUESTIONS demonstrates a fundamental
limitation on the power of any branching-search method. In the game
one player thinks of an object, which he describes as being animal,
vegetable or mineral, or any combination of those characteristics. The

opposing players try to guess what the object is by asking as many as
20 questions, which must be answered "Yes" or "No." It can be proved
that the players cannot identify more than 223, or 8,388,608, objects
correctly. The reason is that the set of characteristics animal, vegeta-

Cryptanalysis). When these words are
arranged alphabetically in the locations
KEY[I], KEY[2]. KEY[3], . . . ,KEY[3 1]
of a table. Algorithm B first compares
the desired word x to the midpoint
KEY[1 6]. which is the word ''1''. If x is
alphabetically less than "I" . the next
comparison will be with KEY[8]. which
is the word "by"; if x is greater than "I",
the next comparison will be with
KEY[24]. which is "that". In other
words. Algorithm B acts on the table of
words by following a structure that
looks like an upside-down tree, starting
at the top and going down to the left
when x is less and down to the right
when x is greater [see top illustration on
page 72]. It is not hard to see that any
algorithm designed to search an ordered
table purely by making comparisons can
be described by a similar binary tree.

The tree for binary search is defined
implicitly in Algorithm B by arithmetic
operations on /, rand j. It can also be
defined explicitly by storing the tree in­
formation in the table of words itself.
For this purpose let LEFTIJ1 be the posi­
tion in the table at which we are to look
if word x is less than KEYIJ], and let
RIGHTU] be the position at which we
are to look if x is greater than KEYU].
For example, binary search in a table of
3 1 words would have LEFT[1 6] equal
to 8 and RIGHT[1 6] equal to 24. since
the search starts at KEY[1 6] and then
proceeds to either KEY[8] or KEY[24].
If the search is to terminate unsuccess­
fully after determining that the desired
word x is less than KEYIJ1 or great­
er than KEYIJ], we respectively let
LEFTIJ1 equal 0 or RIGHTIJ1 equal O.
In the illustrations on page 72 those O's
are represented by little square nodes at
the bottom of the tree.

The location of the first key to be ex­
amined in a binary tree is traditionally
known as the root; in the 3 1 -word exam­
ple the root is 1 6. It is possible to con-

70

struct search algorithms that do not start
by looking at KEY[1 6]. and these may
well be more efficient than Algorithm B
if some words are looked up much more
often than others. A generalized tree­
search procedure follows:

Algorithm C; tree search.
Cl. [Initialize.] Setj equal to the loca­

tion of the root of the binary search tree.
C2. [Unsuccessful?] If j = O. outputj

and terminate the algorithm.
C3. [Compare.] If x = KEYU]. output

j and terminate the algorithm. If
x < KEYIJ], set j � LEFTU] and go
back to step C2. If x > KEYU]. set
j � RIGHTIJ1 and go back to step C2.

Algorithm C is analogous to a pro­
grammed textbook in which. depending
on the answer to a certain question. each
page tells the reader what page to turn to
next. It works on any binary tree where
all keys accessible from LEFTIJ1 are less
than KEYIJ1 and all keys accessible
from RIGHTIJ1 are greater than
KEYIJ], for all locations j in the tree.
Such a tree is called a binary search tree.

One of the advantages of Algorithm C
over Algorithm B is that no arithmetic
calculation is necessary, so that the
search goes slightly faster on a comput­
er. The main advantage of Algorithm C.
however. is that the tree structure pro­
vides extra flexibility because the entries
in the table can now be rearranged into
any order. It is no longer necessary that
KEY[I] be less than KEY[2] and so on
up to KEY[n]. As long as the pointers
LEFT and RIGHT define a valid binary
search tree. the actual locations of the
keys in the table are irrelevant. This
means that one can add new entries to
the table without moving all the other
entries. For example. the word "has"
could be added to the 3 1 -word binary
search tree simply by setting KEY[3 2] �
"has" and changing RIGHTIJ1 from 0 to

32 . where j is the location of the key
"had". One might think that such addi­
tions at the bottom of the tree would
upset the balanced structure. but it can
be shown mathematically that if new en­
tries are added in random order . the re­
sult will almost surely be a reasonably
well-balanced tree.

Optimum Binary Search Trees

Since Algorithm C applies to any bi­
nary search tree. one can hand-tailor the
tree so that the most frequently exam­
ined keys are examined first. Such tailor­
ing reduces the average time required
for a computer to carry out the search.
although it cannot reduce the worst-case
time. The bottom illustration on page 72
shows the best possible binary search
tree for the 3 1 commonest English
words. based on Gaines's estimates of
their frequency. The average number of
comparisons needed to search for x in
this optimum binary search tree is only
3 .43 7 . whereas the average number of
comparisons needed in the balanced bi­
nary search tree is 4.393 . It is worth not·
ing that the optimum tree, which is
based on the frequencies of the words,
does not start by comparing x with the
word "the". Even though "the" is by far
the commonest English word. it comes
so late in alphabetical order that it is too
far from the middle of the list to serve as
the optimum root.

From the standpoint of conventional
mathematics it is trivial to find the opti·
mum binary tree for any particular set
of n words and frequencies because
there are only finitely many search trees.
In principle one merely has to list all the
trees and choose the one that works best.
In practice. however, this observation is
useless because the number of possible
binary trees with n elements is equal to
(2n)!/n!(n + I)!. where n! stands for the
product I X 2 X 3 X ... X n. This for-

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

MINERAL

�����------
NUMBER OF
POSSIBLE OBJECTS
I DENTIFIABLE
WITH EACH
ANSWE R

23 ANIMAL, MINERAL VEGETABLE, MINERAL ANIMAL, VEGETABLE, MINERAL

/\ /\ /\ /\
YES NO YES NO YES NO YES NO 24

/\ /\ /\ /\ /\ /\ /\ /\
25 rES 1\

; NO
1\

NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
/\ 1\ /\ /\ /\ /\ /\ /\ /\ 1\ /\ /\ /\ /\ /\ 26 YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO

/I,
. .

/I,
. .

1\ 1\ /I, /I, /I, /I, /I, ('.
. . . .

/I,
. .

/I,
. .

1\ ('. 1\ 1\ 1\
. .

1\
. .

1\
. .

1\
"

/I,
. .

1\
. .

/I, /I, /I,
. .

1\ /I,
. .

/I,
. .

1\ /I,

� 23

ble and mineral bas only eigbt, or 23, possible subsets (including tbe
null set Ii for an object witb none of tbose cbaracteristics), and tbese
eigbt possibilities combine witb only 220 possible outcomes to tbe
20 yes-no questions. A similar argument can be used to sbow tbat a

searcb algoritbm asking at most 20 "less-equal-greater" questions
cannot distinguisb more tban 220 - 1 different key values, since 1 +
2 + 4 + 8 + + 2'9 = 220 - 1. Binary searcb is able to attain tbismax­
imum limit, tbus it is tbe most efficient searcb algoritbm of its kind.

mula shows that there are very many
binary trees indeed, approximately 4nj
V(7Tn3) of them. where 7T is the famil·
iar 3. 1 4 1 59. For example. when 1/ is 3 1 .
the total number of possible binary trees
is 14, 544.63 6,039,226,909. and each of
these 14 quadrill ion trees will be opti·
mum for some set of assumed frequen·
cies for the 31 words. How, then, is it
possible to show that the particular tree
I have chosen is the best one for Gaines's
frequencies? The fastest modern com­
puter is far from fast enough to examine
14 quadrillion individ ual possibilities:
if one tree were considered per micro­
second, the task would take 460 years.

There is, however, an important prin­
ciple that does make the computation
feasible: Every subtree of an optim um
tree must also be optimum. In the opti­
mum binary search tree for the 3 1 com­
monest English words the subtree to the
left of the word "of" must represent the
best possible way to search for the 20
words "a", "and" and so on over to
"not". If there were a better way, it
would lead to a better overall tree. and
the given tree would therefore not be
optimum. Similarly, in that subtree the
even smaller subtree to the r ight of "for"
must represent the best possible way to
search for the I I words "from". "had"
and so on over to "not". Each subtree
corresponds to a set of consecutive
words KEY[i]. KEY[i + I], ... ,KEYU].
where I � i < j � n. It is possible to de­
termine all the optimum subtrees by
finding the small ones first and doing the
computation in order of increasing val­
ues of j - i. For each choice of indices i
and j there are j - i + I possible roots
of the subtree. As one proceeds up the
tree with the computation and examines
each possible subtree root the optimum
subtrees to the left and right will have
already been calculated.

By this proced ure the best possible bi­
nary search tree for 1/ keys and freq uen-

cies can actually be found by doing
about n3 operations. In fact, I have been
able to improve the method even fur­
ther. so that the number of operations
required can be reduced to n2. In the
case of the 3 1 commonest words this
means that the optimum binary search
tree can be d iscovered after only 961
steps instead of 14 quadrillion.

I should point out that the preced ing
paragraphs d iscuss several algorithms
whose sole purpose is to determine the
best binary search tree. In other words,
the output of those algorithms is itself
an algorithm for solving another prob­
lem! This example helps to explain why
computer science has been developing
so rapidly as an independent d iscipline.
In the study of how to use computers
properly, problems arise that are inter­
esting in their own r ight, and many of
these problems require both a new and
interrelated set of concepts and tech­
niques.

It is amusing and instructive to con­
sider the worst possible b inary search
tree for the 3 1 commonest English
words in order to see how bad things
could possibly become with Algorithm
C. As in the case of the optimal trees.
there is a way to determine such "pessi­
mal" trees in about n2 operations. For
the 3 1 words with Gaines's frequencies
the pessimal binary search tree requires
Algorithm C to make an average of
19. 1 5 8 comparisons per search. By way
of comparison the worst arrangement of
the keys for a sequential search requires
Algorithm A to make an average of
22.907 comparisons per search. Hence
even the worst case for Algorithm C can
never be quite as bad as the worst case
for Algorithm A.

Hashing

The above algorithms for searching
are closely related to the way people

look for words in a dictionary. There is
actually a much better way to search
through a large collection of words by
computer. It is called hashing, and it is a
completely d ifferent approach that is
quite unsuitable for human use because
it is based on a machine's ability to do
arithmetic at high speeds. The idea is to
treat the letters of words as if they were
numbers (a = I, b = 2, C = 3 and so on
through z = 26) and then to hash, or
scramble, the numbers in some way in
order to get a single number for each
word. The number is the "hash address"
of the word; it tells the computer where
to look for the word in the table.

In the case of the 3 1 commonest En­
glish words we could convert each key
into a number between 1 and 32 by add­
ing up the numerical values of i ts letters
and throwing away excess multiples of
3 2 . For example. the hash address of
"the" would be 20 + 8 + 5 - 32 = I,
the hash address of "of" would be
15 + 6 = 2 1 , and so on for the rest of
the list. If one is lucky, each word will
lead to a d ifferent hash address and any
search will be very fast.

In general, suppose there are m loca­
tions in the computer's memory, and
suppose we want to store n keys, where
m is greater than n. Since n is eq ual to 3 I,
let us say m is equal to 3 2. Suppose also
there is a hash function h(x) that con­
verts each possible word x into a num­
ber between 1 and m. A good hash func­
tion will have the property that h(x) is
unlikely to be equal to h(y). if x and yare
different words to be put into the table.

Unless m is much larger than n, how­
ever, nearly every hash function will
lead to at least a few "collisions" be­
tween the values h(x) and h(y). It is ex­
tremely improbable that n independent
random numbers between 1 and m will
all be different. Consider a common ex­
ample : It is well known that when 23 or
more people are present in the same

71

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

room there is a better than even chance
that two of them will have the same
birthday. Moreover, in a group of 88
people it is likely that there will be three
individuals with the same birthday. Al­
though this phenomenon seems para­
doxical to many people, the mathemat­
ics can be easily checked, and many

seemingly impossible coincidences can
be explained in the same way.

to deal with the problem of collisions.
Suppose we want to search a table for

x but the hash address h(x) already con­
tains word y. The simplest way to handle
the collision is to search through loca­
tions h(x), h(x) - 1, h(x) - 2 and so on
until we either find x or come to an emp­
ty position. If the search runs off one end

Another way to state the birthday par­
adox is to say that a hash function with
m equal to 3 6 5 and n equal to 23 will
have at least one collision, more often
than not. Thus any search procedure
based on a hash function must be able

BINARY SEARCH TREE is implicit in Algorithm B, Here a tree
graphically illustrates the order in which Algorithm B would probe
an alphabetical table of the 31 commonest words in English. Starting
at the "root," or top, of the tree, the input word x is first compared
with the midpoint of the table, the word "I". If x is alphabetically
smaller than "I", the search proceeds down the left branch of the tree;
if x is greater, the search proceeds down the right branch. For ex­
ample, if x is the word ''from'', the search first finds that x is less than

OPTIMUM BINARY SEARCH TREE shows the best order of the
31 words in the tree, based on the relative frequency of each word es­
timated by Helen Fouche Gaines. The frequency of each word is rep­
resented by the number below it. This tree is not as well balanced as
the tree implicitly defined by the standard binary-search algorithm
and shown in illustration above, and the search will therefore take

72

16

"I", then that x is greater than "by", then that x is less than "have", fi­
nally that x is equal to ''from''. If x were not in the table, the search
would stop at one of the 32 zeros (square nodes) at bottom of the tree.
When branches of tree are represented explicitly in computer's mem­
ory, rather than implicitly as in Algorithm B (which requires calcula­
tion of midpoints), search goes slightly faster. It also becomes easier
to insert new information: if one wants to add "has" (word in gray)
to tree, one inserts it in alphabetical order in place of one of zeros.

�1.849L
� � l�l6
�.29�

longer in some cases. For example, to find the word "from" in this tree
takes six steps instead of four (path in gray and color). On the average
the optimum tree is faster for a computer to search, however, because
the commoner words are tested sooner. Note that although the word
"the" is by far the most frequently used word in English, it is not
placed at root of the tree because it is too far from center of alphabet.

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

-�roid Type 665 Positive /Negative Film is ��: a preservative agent: The Royal Photo­
graphic Society of Great Britain chose it to copy over
1 2 ,000 rare masterpieces (like the one below) from
its Archives . Type 665 provides instant 3� x 4�

inch positives for reference purposes. And negatives
of superb quality for high fidelity reproductions.
The negatives' high resolution permits great enlarge­
ment without loss of detail . And their wide tonal
range reproduces every shading nuance of the orig-

FROM THE ARCHIVES OF THE ROYAL PHOJDORAPHIC SOCIETY OF OREAT BRI'E4IN.

TI oo rn S) [
(1 887, 18'k"X 11

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

inal prints . Furthermore, since the Polaroid prints
and negatives are produced in only 30 seconds, the
original photographs can lie, untouched, under the
camera until the archivist knows he has satisfactory
copies . The irreplaceable originals can then be re-

moved to safe storage under optimum conditions
with no further handling risks. Thus, in a manner of
speaking, some of the great pioneers in the history
of British photography will owe their lasting repu­
tations to a (zlm made by Polaroid Corporation .

REPRODUCED FROM A POLAROID TYPE 665 NEGATIVE (3lJl, X 414,)

o lMl [Jl [E ill S) 0
, AT I N U M PR I NT)

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

The new $2984* Colt.
Isn't a Datsun.
Isn't a Toyota.

Its a lot of little ge.
The new Dodge Colt is

such a lot of car, it's got M r. D.
and M r. T. confused. Because Colt
offers you the value you'd expect
from this i mport, plus Dodge Colt
sales and service coast to coast.

47 MPG highway, 30
MPG city. Colt wi l l g ive you
great m i leage, according to E PA

estimates�* You r m i leage may
vary, accord ing to your car's
cond ition, equ ipment. and you r
driving habits. And Dodge Colt
runs on either regu lar or u n leaded
gas.

Looking for a long list of
standard features? Wel l , you get it
on all of our 77 Colt models. Even
our lowest priced two-door coupe
g ives you whitewal l t ires, two
recl in ing bucket seats; tinted glass

in a l l windows, carpeting, adjustable
steering colu m n , s imulated wood­
grai ned instrument panel , fou r­
speed manual transmission, q u iet
sound i nsu lation, tri p odometer,
locking gas cap, and electric rear
window defroster.

And we offer you an optional
automatic transmission to go with
the standard 1 .6 l iter engine.

So if you're thinking
"import:' think about Dodge
Colt. I t's not a Datsu n . Not a Toyota.
For $2984, it's a lot of l ittle Dodge.
See it at you r Dodge Colt Dealer's.
*Manufacturer's suggested retail price, not
i ncluding destination charge, taxes, title, and
options. California prices higher.
**Equip ped with standard 1 .6 l iter engine,
four-speed manual transmission, and 3.31
rear axle ratio. California mileage IO'lller.

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

of the table before it is completed. it
resumes at the other end. This proce­
dure. which is known as linear probing.
can be spelled out in an algorithm:

Algorithm D; hashing with linear
probing.

D 1 . [Initialize.] Set j � h(x}.
D2. [Unsuccessful?] If table entry j is

empty . output 0 and terminate the algo­
rithm.

D3. [Successful?] If x = KEYU]. out­
put j and terminate the algorithm.

D4. [Move to next location.] Set
j � j - 1 ; then if j = O. setj � m. (Loca­
tion m is considered to be next to loca­
tion 1 .) Return to step D2.

If x is not in the table. and if the algo­
rithm terminates unsuccessfully in step
D2 because table entry j is empty . we
could set KEY[J] � x using the current
value of j. This would insert x into the
table so that the algorithm could re­
trieve it later. A subsequent search for x
will follow the same path as it did the
first time. starting at position h(x}. mov­
ing to h(x} - 1 and so on. finding x in
position j. Thus the search will proceed
properly even when collisions occur.

Returning to the example of the 3 1
commonest English words. suppose the
words are inserted one by one into an
initially empty table in decreasing order
of their frequency ("the" is inserted first.
"of" is inserted second and so on). The
result is the hash table shown in the illus­
tration on the next page. Most of the
words appear at or near their hash ad­
dresses except for the ones that are in­
serted into the table last; the least fre­
quent word. "this" . has been placed in
position 8 although its hash address is
24. because positions 9 through 24 were
already filled by the time it was inserted.
In spite of such anomalies the average
number of times the table must be
probed by Algorithm D in order to find
a word turns out to be only 1 .666-less
than half the average number of com­
'parisons required to find the word with
the optimum binary search tree. Of
course. the time needed to compute h(x}
in step Dl must be added to the time for
probing the table. For large collections
of data. however. the hashing method
will significantly outperform any bina­
ry-comparison algorithm.

In practice one would almost never let
a hash table get as full as it does in the
example. The number m of table posi­
tions available is usually chosen to be so
large that the table will never become
more than 80 or 90 percent full. It can be
shown that the average number of

"PESSIMAL" TREE shows the worst possi­
ble binary search tree for searching for tbe
31 commonest English words_ This tree bas
lost advantage of tree structure because one
branch of each comparison is always "dead."

1 5 .568 �--""'

77

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

1 THE (1)
2 HAVE (4)

3 TO (3)
4 HIS (4)
5
6 BE (7)
7 FOR (7)
8 THIS (24)
9 I (9)

1 0 BUT (1 1)
1 1 WAS (1 1)
1 2 HAD (1 3)
1 3 H E (1 3)
1 4 FROM (20)
1 5 AT (2 1)
1 6 NOT (1 7)
1 7 THAT (1 7)
1 8 WHICH (1 9)
1 9 AND (1 9)
20 AS (20)
2 1 O F (2 1)
22 ON (29)
23 IN (23)
24 ARE (24)
25 YOU (29)
26 BY (27)
27 WITH (28)
28 IS (28)
29 IT (29)
30 HER (31)
31 OR (1)
32 A (1)

"HASH" TABLE provides a better way for a
com puter to search through large files of data.
For each word x one uses a computer's ability
to do high-speed arithmetic by computing a
hash address h(x), where the search for x is
to start. The hash address for each of the 31
commonest words is shown in parentheses af­
ter each word; in this example each hash ad­
dress was obtained by adding the numerical
value of each letter (a = 1, b = 2 and so on up
to z = 26) and discarding excess multiples of
32. Sometimes two different words x and y
have the same hash address h(x), so that they
"collide." If x is not stored in position h(x), the
search continues upward through positions
h(x) - 1, h(x) - 2 and so on. For example, the
hasb address of "his" is h + i + s, or 8 + 9 +
19 - 32 = 4. The hash address of "have" is also
4. To search for "have" the algorithm looks
first in position 4 (light gray), then in position
3 (dark gray) and finally in position 2 (color),
where "have" is located. If word x is not in ta­
ble, search for it will stop at empty position 5.

78

probes needed to find one word out of 1/
equally likely words that have been ran­
domly inserted into a table of size m is
1 + [(1/ - 1) l m + (1/ - 1)(1/ - 2) / m 2 +

(1/ - 1) (1/ - 2) (1/ - 3) / m 3 + . '] 1 2 . Let
the symbol a stand for 1/ 1 m. the ful lness
ratio or "load factor" of the table. As 1/
approaches infinity it can be shown that
the average number of probes required
to find any word x in a table approach­
es the value I + (a + a2 + a3 + . ') 1 2 .
which i s equal t o [1 + 1 /(1 - a)] 1 2 .
Furthermore. the true average number
of probes will always be less than this
limiting value. Therefore when the table
being searched is 80 percent full. Algo­
rithm 0 makes fewer than three probes
per successful search on the average .

It is important to note that the stated
upper limit on the average number of
probes per successful search holds for
all tables that are eq ually full . no matter
how large the table is. The same cannot
be said about binary-comparison algo­
rithms. because their average running
time per successful search will grow ar­
bitrarily large as the number 1/ of words
to be searched increases .

Improving Unsuccessful Searches

My statements in the preceding para­
graphs about the small number of
probes required with Algorithm D ap­
ply only to cases where x is actually
found in the table. If x is not present. the
average number of probes needed to
ascertain that fact will be larger .
namely 1 + [2n l m + 3 1/ (n - I) 1 m 2
+ 4n(n - l)(n - 2) 1 rn3 + '] 1 2 ; when
n is large. this number is approximately
equal to [I + 1 /(1 - a)2] 12. In other
words. an average unsuccessful search
in a large hash table that is 80 percent
full requires nearly 13 probes. More­
over . in my example of the 3 1 words in
32 spaces. note that all unsuccessful
searches must terminate at the single
empty position 5 regardless of the loca­
tion of the starting address h(x). A pre­
cisely analogous situation occurred with
the sequential search Algorithm A . .
where a l l unsuccessful searches end at
position O.

In 1 973 O. Amble of the University of
Oslo noted that the problem of unsuc­
cessful search could be alleviated by
combining the concept of hashing with
the concept of alphabetical order. Sup­
pose the 3 I commonest English words
are inserted into the table in decreasing
alphabetical order instead of in decreas­
ing order of frequency. Since the table is
probed by starting at the address h(x)
and moving to h(x) - I and so on. all
words lying between the address h(x)
and the actual location of x must be al­
phabetically greater than x lest there be
a collision. A search for x can therefore
be terminated unsuccessfully whenever
a word alphabetically less than x is en-

co untered . In other words. the following
algor ithm can be used :

Algorithm E: l inear probing in an or­
dered hash table. This algorithm as­
sumes that KEY[;l is 0 when entry j is
empty . and that all words x have a nu­
merical value that is greater than O.

E 1 . [Initialize.] Set j - h(x).
E2 . [Unsuccessful?] If KEYU] < x.

output 0 and terminate the algorithm.
E3 . [Successful ?] If KEYU] = x. out­

put j and terminate the algorithm.
E4. [Move to next .] Set j - j - 1 ; then

if j = O. set j - m. Return to step E2 .

The advantage of Algorithm E is il­
l ustrated in the ordered hash table on
page 80. S uppose one wants to deter­
mine if "has" is one of the 3 I common­
est English words. Its hash address is
8 + I + 19 = 2 8 . With Algorithm E the
search terminates in six steps when it
reaches j = 22 ("by") instead of continu­
ing through the table until it encounters
the empty table entry at j = 5.

In an ordered hash table the average
number of probes per unsuccessful
search is red uced to 1 + [n l m +
n (n - I) I m 2 + n (n - I) (n - 2) / m 3
+ . .] 1 2. and this number is always less
than [I + 1 / (1 - a)] 1 2. Thus the limit
for a successful search and the limit for
an unsuccessful one are identical. On
the average . when an ordered hash table
is 80 percent full . Algorithm E will
make less than three probes regardless
of the size of n .

This i s all very well i f the ordered
hash table has been set up by inserting
the keys in decreasing alphabetical or­
der as I have described it. In practice .
however . one cannot always assume
that the words of a table have been en­
tered in such a manner . Tables often
grow dynamically with use . and new
words enter in random order. Although
the structure of a binary tree (Algorithm
C) and of an unordered hash table (Al­
gorithm 0) will handle dynamic growth
with ease. the structure of an ordered
hash table (Algorithm E) is not so obvi­
ously adaptable. Fortunately there is a
very simple algorithm for inserting a
new word into an ordered hash table :

Algorithm F; insertion into an or­
dered hash table. This algorithm puts a
new word x into an ordered hash table
and appropriately rearranges the other
entries so that searching with Algorithm
E remains valid.

F I . [Initial ize.] Set j - h(x) .
F2. [Compare.] If KEY[;] < x. inter­

change the values of KEY[;l and x.
(That is. set x to the former value of
KEYU] and set KEYU] to the former
value of x.)

F 3 . [Done ?] If x = O. terminate the
algorithm.

F4 . [Move to next .] Set j - j - I ; then

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

the Bang & Olufsen Beosystem 1 900.
It's so simple, most people don't get it.

An alternative to the airplane cockpit school of audio

design. I t 's not knobs and dials that make su perb sou nd, it's
superb engi neer ing.
I n t h e B e o s y s t e m
1 900, there is almost
none of the former ,
and a g reat deal of
the latter.

A few cases in point :
Your finger, the component. With the Beomaster®

1 900, you become part of the syste m Al l major controls are
electronical ly activated by a l ight touc h of you r finger on the
front control panel. The instant you touch it an i l l umi nated
i ndicator appears for each function, you always know the
operational status of the 1 900, even in the dark.

For details, look inside. Secondary controls, for bass,

Thanks for the memory.

The Beomaster 1 900 also a l lows
you one unforgettable conven­
ience. You may pre-set the vol­
ume level and pre-tu ne up to five
FM stat ions. Then, at the instant
you want it you have the station
you want at the level you want.
Why clutter you r memory when
the syste m has one?

treble, and FM tu ning, are
o u t of s i g h t , l i t e r a l l y ­
c o n c e a l e d b e h i n d a n
aluminu m door that opens
and c loses i n a manner
remin iscent of the Starship
"Enterprise."

lr '� • • ,
.� � � .,.
"" '" '" ." _ '" _ " II' -... - .. -

.... ' flo4 FIolJ "'" �

The turntable, taken to Its logical conclusion. The
Beogram® 1 900 tu rntable's very low mass tone arm and MMC
4000 cartr idge work magnif icently wi th each other, because
they are made to work with each other, by eng ineers who ta lk

t o each ot h e r, l i s ten to
each other, and design for
each other. I f that str i kes
you as overwh e l m i n g l y
l o g i c a l , y o u ' d b e s u r ­
p r i s e d h o w o t h e r t u r n ­
tables are put together.

A scratched record is forever. (HoW to protect your

investment.) No matter how little you 've spent on you r record
col lection, chances are some of it i s I r replaceable, wh ich
makes it pr iceless. I t makes sense to protect It -the way ou r
MMC 4000 cartr idge does with an effective t ip mass of only 0.4
mi l l igrams. (A t iny square of th is page, th is big 0 weighs 1 .0
mi l l igram) This results in a touc h so del i cate t hat it's
almost i mpossible to scratch you r records whi le playi ng
them It a lso reduces wear considerably enabl ing you r
records to cont inue working wel l past normal ret i rement age.

We don't recommend this,
but with t he MMC 4 000
cartr idge, it won't hurt .

• ••••

o
It's not size that counts. It's perfor­

mance. Can a speaker smal l enough to fit on
an eight- inch shelf (or unobtrus ive enough to
hang on a wal l) i m press your a u d i o p h i l e

fr iends? Yes, i f they keep their eyes c losed
,.--.--__..mn-U· · · and thei r ears open.

The missing link: Our 100% solution. Phase d i stor ­
tio n -a pri nc ipal v i l la in in speaker performance -was iden­
tif ied in 1 973 by Bang & Olufsen eng ineers. The f i rs t pract ical
solut ion to the probl em was presented i n London i n 1 97 5 to
the i nternational organization, the Audio Engineer ing Society,
by Bang & Olufsen engi neers.

Today that solut ion is an i ntegral part of ou r Beovox®
Phase-Link® Loud speakers (Pat. Pend.).

If a child can operate it, will

an adult buy it? Because usabil­
ity is at the heart of the Beosystem
1 900's design, i t is true that a ch i ld
can o p e rate i t . But o n l y a very
soph i st icated ad u lt can t ru ly ap­
preciate i t . Welcome. Write to us at :
Bang & Olufsen of Amer ica, 5 1 5
Bu sse Road, Dept. 1 3 K Elk Grove
Vi l lage, I l l i nois 60007, we' l l be happy
t o s e n d you ou r b r o c h u re a n d
dealer l ist .

Bang & Olufsen

79

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

Genuine
Unitron
telescopes
for un([er
S200!

Un i t ron 80mm
spotti ng' scope .

Exp l o re the moons of J u p i ter or look
at a sq u i rre l t h rough the extrao rd i na ry
opt ics of a gen u i ne U n i t ron te lescope !
The two- i n c h U n i t ron refractor for
v iew i n g the heavens i s only $1 95 com­
p l ete, and the new 80m m U n itron
w idef i e l d spott i n g scope for te rres­
t r ia l observat ions starts at only $90 !

A n ice hobby g i ft for young and o ld !
Send coupon for add i t iona l i nfor­

mat ion and f ree cata log .

U NI T/?ON The value l ine

1-------------,
, Un i t ron Instruments. I nc . 1 , SUb. of Ehren re ich Photo-Opt ica l l n dus t r ies . l n c ' l
1
1 01 Crossways Park West. Wood b u ry. NY 11797
USA (51 6) 364-8046 Dept . SA -4 1

I I
I I
I Name I please pr int
' Address I
I I
I �w I
I . I �t::e

_ _ _ _ _ _
..!�

_ _ _
_

:J

80

if j = O. again set j � m. Go back to step
F2.

If we choose to insert the word "has"
into the ordered hash table of the 3 1
commonest English words by means of
Algorithm F. the procedure would place
"has" in position 22. making room for it
by moving "by" from position 22 to po­
sition 1 8 . moving "at" from position 1 8

1 THE (1)

2 HAVE (4)

3 TO (3)

4 H IS (4)

5

6 BE (7)

7 FOR (7)

8 AND (1 9)

9 I (9)

1 0 BUT (1 1)

1 1 WAS (1 1)
1 2 HAD (1 3)

1 3 H E (1 3)

1 4 ARE (24)

1 5 AS (20)

1 6 NOT (1 7)

1 7 THAT (1 7)

1 8 AT (21)

1 9 WH ICH (1 9)

20 FROM (20)

21 OF (2 1)

,. 22 BY (27)
23 IN (23)
24 THIS (24)
25 IS (28)
26 IT (29)
27 ON (29)
28 WITH (28)
29 YOU (29)

30 A (1)

3 1 H E R (3 1)

32 OR (1)

ORDERED HASH TABLE, which combines
the concept of hashing with the advantage of
alphabetical order, reveals more quickly when
the input word is not present. Here all the
words between position h(x) and the actual 10-
cation of x are alphabetically greater than x.
Thus an unsuccessful search need not stop
only at the empty position 5; it will also stop
as soon a� a word alphabetically less than x is
encountered. If desired word x is "has", with
hash address 28 (light gray), search will stop
when it reaches "by" at position 22 (dark gray).

to position 1 5, moving "as" from posi­
tion 1 5 to position 1 4, moving "are"
from position 1 4 to position 8 and final­
ly moving "and" from position 8 to the
empty position 5. That may seem like a
lot of work, but it takes only slightly
longer than the task of inserting "has"
into an unordered hash table using Al­
gorithm D. In general the insertion of a
word into an ordered hash table takes
the same number of iterations as the in­
sertion of the same word into an unor­
dered hash table. Furthermore, the aver­
age number of words in the table that
must be interchanged by way of step
F2 to accommodate the new word is
(n - 1) 1 2m + 2 (n - 1) (n - 2) 1 3m2
+ 3 (n - 1)(n - 2)/4m3 + " , which is
approximately equal to 1 / (1 - a) +
[log.(1 - a)]la . where e is the familiar
2. 7 1 828 . Thus inserting words by Algo­
rithm F is quite a reasonable task.

In this specific case we actually should
not have inserted "has" into the table
because hash tables ought to have at
least one empty position. By coinci­
dence the smallest possible word in al­
phabetical order. "a", is present in this
completely full table. Hence linear
probing with Algorithm E will still work
correctly in all cases. If "a" were not in
the table, however, an empty position
would be needed in order to avoid end­
less searching when the input word x
was equal to "a".

One of the most surprising properties
of ordered hash tables is that each one is
unique. If we use Algorithm F to build
an ordered hash table from any set of
words, the same table will be obtained
regardless of the order in which the
words are inserted. The reader may find
it entertaining to prove this fact for him­
self.

Conclusion

My discussion of ways to search for
information stored in a computer's
memory is intended to illustrate several
important points about algorithms in
general. As we have seen, an algorithm
must be stated precisely, and it is not as
easy to do that as one might think. When
one tries to solve a problem by comput­
er, the first algorithm that comes to
mind can usually be greatly improved.
Data structures such as binary trees are
important tools for the construction of
efficient algorithms. When one starts to
investigate how fast an algorithm is, or
when one attempts to find the best possi­
ble algorithm for a specific application,
interesting issues arise and one often
finds that the questions have subtle an­
swers. Even the "best possible" algo­
rithm can sometimes be improved if we
change the ground rules. Since comput­
ers "think" d ifferently from people,
methods that work well for the human
mind are not necessarily the most effi­
cient when they are transferred to a
machine.

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

© 1977 SCIENTIFIC AMERICAN, INC

This content downloaded from
������������172.226.20.103 on Tue, 24 May 2022 00:18:44 UTC�������������

All use subject to https://about.jstor.org/terms

