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Algorithms 
An algorithm is a set of rules for getting a specific output from 
a specific input. Each step must be so precisely defined it can 
be translated into computer language and executed by machine 

Ten years ago the word "algorithm" 
was tmknown to most educated 
people; indeed, it was scarcely 

necessary, The rapid rise of computer 
science, which has the study of algo­
rithms as its focal point, has changed all 
that; the word is now essential. There 
are several other words that almost, but 
not quite, capture the concept that is 
needed: procedure, recipe, process, rou­
tine, method, rigmarole. Like these 
things an algorithm is a set of rules or 
directions for getting a specific output 
from a specific input. The distinguishing 
feature of an algorithm is that all vague­
ness must be eliminateq; the rules must 
describe operations that are so simple 
and well defined they can be executed by 
a machine. Furthermore, an algorithm 
must always terminate after a finite 
number of steps. 

A program is the statement of an al­
gorithm in some well-defined language. 
Thus a computer program represents an 
algorithm, although the algorithm itself 
is a mental concept that exists indepen­
dently of any representation. In a simi­
lar way the concept of the number 2 
exists in our minds without being writ­
ten down. Anyone who has prepared a 
computer program will appreciate the 
fact that an algorithm must be very pre­
cisely defined, with an attention to detail 
that is unusual in comparison with the 
other things people do. 

Programs for numerical problems 
were written as early as 1 800 B.C., when 
Babylonian mathematicians at the time 
of Hammurabi gave rules for solving 
many types of equations. The rules were 
stated as step-by-step procedures ap­
plied systematically to particular nu­
merical examples. The word algorithm 
itself originated in the Middle East, al­
though at a much later time. It comes 
from the last name of the Persian schol­
ar Abu Ja'far Mohammed ibn Musa al­
Khowarizml. whose textbook on arith­
metic (about A.D. 825)  had a significant 
influence for many centuries. 

Traditionally algorithms were con­
cerned solely with numerical calcula­
tion. Experience with computers has 
shown, however, that the data manipu-
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lated by programs can represent virtual­
ly anything. Accordingly the emphasis 
in computer science has now shifted to 
the study of various structures by which 
information can be represented, and to 
the branching, or decision-making, as­
pects of algorithms, which allow them 
to follow one or another sequence of 
operations depending on the state of af­
fairs at the time. It is precisely these fea­
tures of algorithms that sometimes 
make algorithmic models more suitable 
than traditional mathematical models 
for the representation and organization 
of knowledge. Although numerical al­
gorithms certainly have many interest­
ing features, I shall confine the follow­
ing discussion to non-numerical ones in 
order to emphasize the fact that algo­
rithms deal primarily with the manipu­
lation of symbols that need not repre­
sent numbers. 

Searching a Computer's Memory 

In order to illustrate how algorithms 
can fruitfully be studied, I shall consider 
in some depth a simple problem of re­
trieving information. The problem is to 
discover whether or not a certain word, 
x, appears in a table of words stored in a 
computer's memory. The word x might 
be the name of a person, the number of a 
mechanical part, a word in some foreign 
language, a chemical compound, a cred­
it-card number or almost anything. The 
problem is interesting only when the set 
of all possible x's is too large for the 
computer to handle all at once; other­
wise one could simply set aside one loca­
tion in the memory for each word. 

Suppose n different words have been 
stored in the computer's memory. The 
problem is to design an algorithm that 
will accept as its input the word x and 
will yield as its output the location j 
where x appears. Thus the output will be 
a number between 1 and n, if x is pres­
ent; on the other hand, if x is not in the 
memory, the output should be 0, indi­
cating that the search was unsuccessful. 

It is, of course, easy to solve this prob­
lem. The simplest algorithm is to store 
the words in locations 1 through n and to 

look at each word in turn. If x is found in 
locationj, the computer should outputj 
and stop, but if the computer exhausts 
all n possibilities with no success, it 
should output 0 and stop. Such a de­
scription of the search strategy is proba­
bly not precise enough for a computer, 
however, and so the procedure should 
be stated more carefully. It might be 
written as a sequence of steps in the fol­
lowing way: 

Algorithm A; sequential search. 
A 1 .  [Initialize.] Set j � n. (The arrow 

here means that the value of variable j is 
set equal to n, the number of words in 
the table to be searched. This is the ini­
tial value of j. Subsequent steps of the 
algorithm will causej to run through the 
sequences of values n, (n - 1 ), (n - 2) 
and so on until it reaches either 0 or a 
location containing the input word x. ) 

A2. [Unsuccessful?] If j = 0, output j 
and terminate the algorithm. (Otherwise 
go on to step A3.)  

A3.  [Successful?] If x = KEYU], out­
put j and terminate the algorithm. (The 
term KEYU] refers to the word stored at 
location j.) 

A4. [Repeat.] Set j � j - 1 (decrease 
the value of j by 1) and go back to 
step A2. 

This algorithm can be depicted by a 
flow chart that may help a person to 
visualize the steps [see illustration on 
page 65]. One reason it is important to 
specify the steps carefully is that the al­
gorithm must work in every case. For 
example, the informal description given 
first might have suggested an erroneous 
algorithm that would go directly from 
step A 1 to step A3;  such an algorithm 
would have failed when n = 0 (that is, 
when no words at all were present), 
since step A 1 would set j to 0 and step 
A3 would refer to the nonexistent 
KEY[O]. 

It is interesting to note that Algorithm 
A can be improved by giving meaning to 
the notation KEY[O], allowing a word to 
be stored in "location 0" as well as in 
locations 1 through n. Then if step Al 
sets KEY[O] � x as well as j � n, step A2 
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can be eliminated and the search will go 
about 20 percent faster on many ma­
chines. Unfortunately for program­
mers, the most commonly used comput­
er languages (standard FORTRAN and co­
BOL) do not allow 0 to be employed as an 
index for a memory location; thus Algo­
rithm A cannot be so easily improved 
when it is expressed as a program in 
those languages. 

Algorithm A certainly solves the 
problem of searching through a table of 
words, but the solution is not very good 
unless the number of words to be 
searched is quite small, say 2 5  or fewer. 
If n were as large as a million, a simple 
sequential search would usually be an 
unbearably slow way to look through 

the table. We would hardly go to the 
expense of building such a large table 
unless we expected to search it freq uent­
ly, and we would not want to waste any 
time during the search. Algorithm A is 
the equivalent of looking for someone's 
telephone number by going through a 
telephone directory page by page, col­
umn by column, one line at a time. We 
can do better than that. 

The Advantage of Order 

It is, in fact, instructive to consider a 
telephone directory as an example of 
such a large table of information. If one 
were asked to find the telephone number 
of someone who lives at 1 642 East 5 6th 

Street, there would really be no better 
way than to do a sequential search 
equivalent to Algorithm A. since a stan­
dard telephone directory is not orga­
nized for searches according to address. 
On the other hand, when one looks up 
someone's name, it is possible to take 
advantage of alphabetical order. Alpha­
betical order is a substantial advantage 
indeed, since a single glance at almost 
any point in the directory suffices to 
eliminate many names from further 
consideration. 

If the words of a table appear consis­
tently in some order, there are several 
ways to design an efficient search proce­
dure. The simplest procedure starts by 
looking first at the entry in the middle of 

OUTPUT: [TI] 

OUTPUT:@] 
SEQUENTIAL-SEARCH ALGORITHM (Algorithm A in the text 
of this article) looks for an input word in a table where the entries 
have not been arranged in any particular order. This table has 25 en­
tries, or keys: KEY[I], KEY [2] and so on up to KEY[25]. Each key 
is a person's name. Suppose the input word is the name "Grant". AI-

gorithm A searches for "Grant" by comparing it first with KEY[25], 
which is "Wilson", then with KEY[24], which is "Taft", and so on. 
Here "Grant" is found to be KEY [17], so that the algorithm outputs 
"17" (top). If input had been "Gibbs", Algorithm A would have com­
pared "Gibbs" with all keys and output would have been 0 (bottom). 
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the table. If the desired word x is numer­
ically or alphabetically less than this 
middle entry .  the entire second half of 
the table can be eliminated; similarly . if 
x is greater than the middle entry. one 
can eliminate the entire first half. Thus a 
single comparison yields a search prob­
lem that is only half as large as the origi­
nal one. The same technique can now be 
applied to the remaining half of the ta­
ble. and so on until the desired word x is 
either located or proved to be absent. 
This procedure is commonly known as a 
binary search. 

Although the ideas underlying binary 
search are simple. some care is neces­
sary in writing the algorithm. First. in a 
table that has an even number of ele­
ments there is no unique "middle" entry. 
Second. it is not immediately clear when 
to stop in the case of an unsuccessful 
search. Teachers of computer science 
have noticed. in fact. that when students 
are asked to write a binary-search proce­
dure for the first time. about 80 percent 
of them get the program wrong. even 
when they have had more than a year of 
programming experience! The reader 
who feels that he understands algo­
rithms fairly well but has never before 
written a binary-search algorithm might 
enjoy trying to construct one before 
reading the following solution. 

Algorithm B; binary search. This al­
gorithm employs the same notation as 
Algorithm A. Moreover. it is assumed 
that the first word. KEY[l]. is less than 
the second word. KEY[2]. which is less 
than the third word. KEY[3]. and so on 
all the way up to the last word. KEY[n]. 
This condition can be written KEY[I] 
< KEY[2] < KEY[3] < ... < KEY[n]. 

B 1 . [Initialize.] Set I�O. r�n + I. 
(The letter 1 stands for the left boundary 
of the search and r stands for the right 
boundary. More precisely . KEYI.!'J can­
not match the given word x unless the 
location j is both greater than 1 and less 
than r.) 

B2. [Find midpoint.] Set j � L(l + r) / 
2]. (The brackets l J mean "Round down 
to the nearest integer." Thus if (l + r) is 
even. j is set to (l + r)12 : if (l + r) is odd. 
j is set to (l + r - 1)12.) 

B3.  [Unsuccessful?] If j = t. output 0 
and terminate the algorithm. (If j eq uals 
t, then r must be equal to t + 1. since r is 
always greater than I; therefore x cannot 
match any key in the table.) 

B4. [Compare.] (At this point j > t 
and j < r.) If x = KEYl.!l output j and 
terminate the algorithm. If x < KEY[j]. 
set r� j and return to step B2. If 
x > KEY[j]. set t � j and return to step 
B2. 

A play-by-play account of Algorithm 
B as it searches through a table of 25 
names is shown in the illustration on the 
next page. 

It seems clear that binary search (Al­
gorithm B) is much better than sequen-
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FLOW CHART FOR ALGORITHM A illustrates the logical path by which the brute-force 
sequential search looks for an input word x in a table of n keys. The algorithm searches for x by 
comparing it first with KEY[n], then with KEY[n - 1], then with KEY[n - 2] and so on. If x 
matches some KEY[;], the algorithm outputsj, the location at which x was found. If x is not in 
the table, the output of the algorithm is O. Arrow in step Al (j�n) means "Setj equal to n" in 
that step. Step in each box is explained in detail in the fuller form of Algorithm A in third col­
umn of text on page 63. On the average Algorithm A must search half of the table to find x. In 
the worst case, if x is at KEY [I] or if x is not present, Algorithm A must search the entire table. 

tial search (Algorithm A). but how 
much better is it? And when is it better? 
A quantitative analysis will answer 
these questions. 

Quantitative Analysis 

First let us analyze the worst cases of 
algorithms A and B. How long can it 
possibly take each algorithm to find 
word x in a table of size n? The answer 
is easy for Algorithm A. If x equals 
KEY[l]. or if x is not in the table at all. it 
will take II executions of step A3;  that is. 
the desired word x must be compared 
with all II entries in the table before the 
search stops. Furthermore. the algo­
rithm will never execute step A3 more 
than II times. When sequential search is 
applied to a table with a million entries, 
a million comparisons will be made in 
the worst case. 

The answer is only slightly more diffi­
cult for binary search. Since Algorithm 
B discards half of the table remaining 
after each execution of step B4, it first 
deals with the entire table, then half of 
the table. then a quarter of the table, 
then an eighth of the table and so on. 
The maximum number of executions of 

step B4 will be k. where k is the smallest 
integer such that 2k is greater than II. For 
example, when binary search is applied 
to a table with a million (106) entries, k 
will be equal to 20. since 220 is greater 
than 106 but 106 is greater than 219. Thus 
if a table with 106 entries is searched 
using Algorithm B. at most only 20 of 
those entries will ever be examined in 
any particular search. 

From the standpoint of worst-case be­
havior , one can go further and say that 
Algorithm B is not only a good way to 
search; it is actually the best possible 
search algorithm that proceeds solely by 
comparing x to keys in the table. The 
reason is that a comparison-based algo­
rithm cannot possibly examine more 
than 2k - 1 different keys during its first 
k comparisons. No matter what strategy 
is adopted. the first comparison always 
selects a particular key of the table and 
the second comparison will be with at 
most two other keys (depending on 
whether x was less than or greater than 
the first key); the third comparison will 
be with at most four other keys ; the 
fourth comparison will be with at most 
eight other keys, and so on. Therefore if 
a comparison-based search algorithm 
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makes no more than k comparisons. the 
table can contain no more than 
1 + 2 + 4 + 8 + . . .  + 2k -1 distinct keys. 
and this sum equals 2k - 1 .  

The familiar game of Twenty Ques­
tions can be analyzed by reasoning in a 
similar way. In this game one player 
thinks of a secret object. the name of 
which he conceals on a folded piece of 
paper. The other players try to guess 
what the object is by asking as many as 
20 questions that must be answered only 
by "Yes" or "No." The other players are 
also initially told whether the secret ob­
ject is animal. vegetable or mineral. or a 
combination of those supposedly well­
defined attributes. By arguing as I have 
in the preceding paragraph. one can 
prove that the other players cannot pos­
sibly identify more than 223 different ob­
jects correctly . no matter how clever 
their questions are. There are only 23 (or 
e ight) possible subsets of the set of at­
tributes animal. vegetable and mineral. 
and there are only 220 possible outcomes 
of the 20 yes-no questions. Thus the to­
tal number of objects one can possibly 

INPUT: I x = GRANT I 

identify is 2 23. The argumcnt holds cven 
when each question asked dcpends on 
the answers to the preceding qucstions. 

Stating this conclusion another way. if 
more than 223 different objects fiust be 
identified .  20 questions will not always 
be enough. The search problem is simi­
lar but not quite the same, since an algo­
rithm for searching does not simply ask 
yes-no questions. The questions asked 
by algorithms of the type we are consid­
ering have three possible outcomes. 
namely x < KEY[j] or x = KEY[j] or 
x > KEYlJl When a table contains 2k 
or more entries. the above reasoning 
proves that k comparisons of x with keys 
in the table will not always be enough. 
Therefore every algorithm that searches 
a table of a million words by making 
comparisons must in some instances ex­
amine 20 or more of those words. In 
short, binary search has the best possible 
worst case. 

The worst-case behavior of an algo­
rithm is not the whole story, since it is 
overly pessimistic to base decisions en­
tirely on one's knowledge of the worst 

that can happen. A more meaningful 
understanding of the relative merits of 
algorithms A and B can be gaincd by 
analyzing their average-case behavior. 
If each of the n keys in a table is eq ually 
likely to be looked up. what is the aver­
age number of comparisons that will be 
needed? For sequential search (Algo· 
rithm A) the answer is the simple aver­
age (l + 2 + 3 + ... + n)l n. which is 
equal to (II + 1 ) /2. In other words. to 
find x with Algorithm A one will on the 
average have to search through about 
half of the table. To determine the aver­
age number of comparisons needed to 
find x using binary search (Algorithm 
B). the mathematics is only a little more 
complicated. In this case the answer 
is k - [(2k - k - 1 )/11]. where k. as be­
fore, is the number of comparisons re­
quired in the worst case. For large val­
ues of II this answer is approximately 
equal to k - 1; therefore the average 
case of Algorithm B is only about one 
comparison less than its worst case. By 
carefully extending the argument made 
earlier it is possible to show that binary 

BINARY-SEARCH ALGORITHM (Algorithm B in the text) is a 
substantial improvement over the sequential-search algorithm when 
the table to be searched is large. The entries in the table must first be 
arranged in order. Here the 2S names are listed in alphabetical order. 
Again the input word x sought is "Grant". The algorithm compares 
"Grant" first with the key in the middle location, j, of the table. It cal­
culates the initial value of j by setting the left boundary I of the search 
at 0 and the right boundary r at n + 1. In this case r is 26. Then I and 
r are added together and divided by 2, rounding down to the nearest 
integer if the answer is not already an integer. The midpoint j of the 
table is 26/2, or 13, which is the location of "Lincoln" (top). Since the 
name "Grant" is alphabetically less than "Lincoln", the algorithm dis-

cards the entire right half of the table, containing all names alphabeti­
cally greater than or equal to "Lincoln". For the remaining half of 
the table the algorithm calculates a new midpoint, first setting r equal 
to the location j just examined, which is 13 (second from top). The 
new midpointj is (0 + 13)12, which must be rounded down to 6, loca­
tion of "Garfield". "Grant" is alphabetically greater than "Garfield", 
so that the left quarter of the table is discarded and the left boundary I 
is set equal to 6 (second from bottom). When procedure is repeated 
once more, "Grant", is found in position 7 (bottom). If input word x 
had been "Gibbs", Algorithm B would have executed one more step, 
with I still equal to 6 and r set at 7. Midpoint j would have been 6, 
which is left boundary of search, meaning that "Gibbs" is not in table. 
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The legend continues ... 

Introducing the world's most 
sophisticated Diesel passenger car. 

The new Mercedes--Benz 300D. 

The new, 5-passenger Mercedes-Benz 3000 - the state of the Diesel passenger car an. 

Here is a most ingenious alternative to the conven­
tional automobile. A truly remarkable new Mercedes­
Benz. With a contemporary new look. With ample room 
for five people, an astonishing 5-cylinder engine and 

an unusually complete array of luxurious appointments and safety sys­
tems. The new 3000. The most sophisticated Diesel passenger car the 
world has ever seen. 

For years, you've heard about 
exotic and promising alternatives to 
the conventional automobile engine. 
To date, only one alternative has kept 
its promise: the Diesel engine-for 
over 60 years, the most efficient com­
bustion power plant in use. 

Now Mercedes-Benz has synthe­
sized its proven, 5-cylinder Diesel 
engine with new, technologically ad­
vanced body design, suspension, steer­
ing and safety systems to produce the 
most ingenious alternative to the con­
ventional automobile. 

A matter of taste 

Though only a trim 190.9 inches from 
bumper to bumper, the new 300D is 
an honest 5-passenger sedan. The 
secret of its spaciousness lies in new 
Mercedes-Benz technology that puts 
the room in the car in the car-with-

out adding bulk or sacrificing safety. 
Enter a new 300D and you're sur­

rounded by a complete array of security 
and convenience features. All are 
standard equipment. Such things as 
cruise control, bi-level climate con­
trol, electric windows, AM/FM radio, 
central locking system, 3-speed wind­
shield wipers. 

The new 300D is not an exercise 
in opulence. But it does exhibit meticu­
lous taste. And as your senses will tell 
you, there's quite a difference between 
the two ideas. 

Sports car handling 

T he new 300D is one of the most 
sparkling road cars Mercedes-Benz has 
ever engineered. I ts sophisticated 
power train, suspension and steering 
are those of a spOrts car. And that is 
why the new 300D handles like one. 

The new 300D's unique,5-cylinder 
engine is the most powerful, the 
smoothest Diesel yet engineered into 
a passenger car. But you pay no penalty 
for this performance bonus. The EPA 
estimates that the new 300D should 
deliver up to 28 mpg on the highway, 
23 mpg in town. (Your mileage will 
depend on how and where you drive 
and the condition and equipment of 
your car.) 

The state of the art 

For over 40 years, Mercedes-Benz has 
pioneered many of the major advances 
in Diesel passenger car engineering. 
The new 300D is the culmination of 
that experience. It is the state of the 
Diesel passenger car art. 

Test drive the new 300D. Experi­
ence the most ingenious alternative to 
the conventional automobile. The 
most sophisticated Diesel rI\ 
passenger car in the world. 'OJ 
Mercedes.-Benz 
Engineered like no other car 

, in the world. 
ClM.".dcs-IXnz.1977 
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The Small Computer 
Twenty-five years ago a computer as powerful as the 

new Processor Technology Sol-20 priced out at a cool million. 
Now for only $995 in kit form or $1495 fully 

assembled and tested you can have your own small computer 
with perhaps even more power. It comes in a package about the 
size of a typewriter. And there's nothing like it on the market 
today. Not from mM, Burroughs, DEC, HP or anybody else! 

It fills a new role 
If you're an engineer, scientist or businessman, the 

Sol-20 can help you solve many or all of your design problems, 
help you quantify research, and handle the books too. For not 
much more than the price of a good calculator, you can have high 
level computer power. 

Use it in the oHice, lab, plant or home 
Sol-20 is a smart terminal for distributed processing. 

Sol-20 is a stand alone computer for data collection, handling 
and analysis. Sol-20 is a text editor. In fact, Sol-20 is the key 
element of a full fledged computer system including hardware, 
software and peripheral gear. It's a computer system with a 
keyboard, extra memory, I/O interfaces, factory backup, service 
notes, users group. 

It's a computer you can take home after hours to play 
or create sophisticated games, do your personal books and taxes, 
and a whole host of other tasks. 

Those of you who are familiar with small computers 
will recognize what an advance the Sol-20 is. 

Sol-20 offers all these features as standard: 
8080 microprocessor-1024 character video display 

circuitry -control PROM memory -1024 words of static low­
power RAM-1024 words of pre programmed PROM-built-in 
cassette interface capable of controlling two recorders at 1200 
bits per second -both parallel and serial standardized interface 
connectors -a complete power supply including ultra quiet 
fan -a beautiful case with solid walnut sides -software which 
includes a preprogr ammed PROM personality module and a data 
cassette with BASIC-5 language plus two sophisticated computer 
video games-the ability to work with all S-IOO bus products. 

Full expansion capability 
Tailor the Sol-20 system to your applications with our 

complete line of peripheral products. These include the video 
monitor, audio cassette and digital tape systems, dual floppy 
disc system, expansion memories, and interfaces. 

Write for our new 22 page catalog. 
Get all the details. 

Processor Technology, Box N, 6200 Hollis St., 
Emeryville, CA 94608. (415) 652-8080. 
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search is also the best possible algorithm 
from the standpoint of the average case: 
every search algorithm must make at 
least k - [(2k - k - 1 ) /n] comparisons 
on the average. and many do worse. 

Better than the Best 

As soon as something has been proved 
impossible .. a lot of people immediately 
try to do it anyway. This seems to be an 
inherent component of human behav­
ior. I have just proved that binary search 
is the best possible way to search a com­
puter's memory. and so naturally I shall 
now look for a better way. 

In the first place. when the number of 
words in a table is small. Algorithm A 
actually turns out to be better than Al­
gorithm B. Why does this not contradict 
the proof that binary search is best? The 
reason is that in comparing Algorithm A 
and Algorithm B I have so far been con­
trasting only the number of compari­
sons each algorithm makes. Actually 
Algorithm A requires less bookkeeping 
acti\lity. so that it takes less time for a 
machine to execute each comparison. 
On a typical computer Algorithm A can 
be made to take about 2n + 6 units 
of time. on the average. for a table of 
size n. Algorithm B. on the other 
hand. will require an average of about 
1 210g2 n - 1 1  + 1 2(k + 1 ) /n  units of 
time. under the same assumptions. Thus 
unless there are 20 or more keys to be 
searched. Algorithm A will be better 
than Algorithm B. These numbers will 
vary slightly from computer" to comput­
er. but they show that the efficiency of 
an algorithm cannot be determined by 
counting only the comparisons made. 

There is another reason Algorithm B 
can be beaten. When we look up some­
one's name in a telephone directory and 
compare the desired name x with the 
names on a page. our subsequent action 
is not influenced solely by whether the 
comparison shows that the desired 
name is alphabetically less than or 
greater than the names on the page; we 
also observe how much less than or how 
much greater than. and we turn over a 
larger chunk of pages if we think we are 
farther from the goal. The above proof 
that binary search is best does not apply 
to algorithms that make use of such 
things as the degree of difference be­
tween x and a particular key. The proof 
for Twenty Questions can be attacked 
on similar grounds. For example. the 
players might notice the length of the 
secret word as it is being written down. 
or they might be able to gain informa­
tion from the length of time the player 
being questioned hesitates before an­
swering "Yes" or "No." 

Therefore a human being concerned 
about efficiency need not begin search­
ing a telephone directory by bisecting it 
as a computer would; the time-honored 
method of interpolation with the aid of . 
alphabetical order probably works bet-

STA RT 
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FLOW CHART OF ALGORITHM B illustrates the rules governing binary search. The algo­
rithm searches for the input word x in a table of n keys that have previously been arranged in 
order. First x is compared with the middle entry of the table. If x is greater than ( > ) the middle 
entry, it is compared with the midpoint of the right half of the table. If x is less than ( < ) the mid­
dle entry, it is compared with the midpoint of the left half of the table. The process continues, 
with half of the remaining table being discarded each time, until either x is found or the search 
reveals that x is not in the table. The half brackets (L J) mean "Round down to the nearest inte­
ger." Like Algorithm A, Algorithm B is written out in detail in first column of text on page 65. 

ter in spite of the proof that the binary 
search is best. In fact. Andrew C. Yao 
of the Massachusetts Institute of Tech­
nology and F. Frances Yao of Brown 
University have recently shown that the 
average number of times an interpola­
tion-search algorithm needs to access 
the table is only log210g2 n plus at 
most a small constant. provided that 
the table entries ar� independent and 
uniformly distributed random numbers. 
When n is very large. log210g2 n is 
much smaller than log2 n, so that inter­
polation search will be significantly fast­
er than binary search. The idea under­
lying the Yaos' proof is that each itera­
tion of an interpolation search tends to 
reduce the uncertainty of the position 
of x from n to the square root of n. Fur­
thermore. they have proved that inter­
polation search is nearly the best pos­
sible. in a very broad sense: any algo­
rithm that searches such a random table 
by making appropriate comparisons 
must examine approximately log210g2 n 
entries. on the average. 

These results are of great theoretical 
importance. although computational 
experience has shown that an interpola­
tion search is usually not an improve-

ment over binary search in practice. The 
reason is that the data stored in a table 
are typically not random enough to con­
form to the assumption of a uniform 
distribution; in addition n is typically 
small enough so that the extra calcula­
tion per comparison required by each 
interpolation outweighs the amount of 
time saved by reducing the number of 
comparisons. The simplicity of binary 
search is one of its virtues. and it is im­
portant to maintain a proper balance be­
tween theory and practice. 

Binary Tree Search 

The binary search can be improved. 
however. in another way: by dropping 
the assumption that every key in the ta­
ble is equally likely to be sought. When 
some keys are known to be far more 
likely candidates than others. an effi­
cient algorithm will examine the more 
likely ones first. 

Before we explore this notion it will 
be helpful to look first at the binary 
search in a different way. Consider the 
3 1  words that are used most frequent­
ly in the English language (according 
to Helen Fouche Gaines in her book 
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EIGHT SUBSETS 
OF ANIMAL, 
VEGETABLE, 
MINERAL 

QUESTION 1: 
TWO ANSWERS 

QUESTION 2: 

/\ /\ 
i\ i\ i\ i\ 

ANIMAL, VEGETABLE, 

MINERAL ANIMAL, VEGETABLE 

/\ /\ 
i\ i\ i\ A 

TWO ANSWERS YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO 
QUESTION 3: 
TWO At>!SWERS 

/\ /\ 
YES NO YES NO 
1\ 1\ ('. 1\ 

/\ /\ 
YES NO YES NO 
/\ /\ /\ 1\ .. " 

/\ /\ /\ /\ 
YES NO YES NO YES NO YES NO 
/\ /\ /\ 0. /\ ('. I'. 0. 

/\ /\ /\ /\ 
YES NO YES NO YES NO YES NO 
1\ i'. ('. 0. /\ ('. /\ !'. 

/\ /\ /\ /\ 
YES NO YES NO YES NO YES N( 
!'. !'. /\ ('. !'. !'. !'. 

QUESTION 20: 
TWO ANSWERS 

. , . . 

THE GAME TWENTY QUESTIONS demonstrates a fundamental 
limitation on the power of any branching-search method. In the game 
one player thinks of an object, which he describes as being animal, 
vegetable or mineral, or any combination of those characteristics. The 

opposing players try to guess what the object is by asking as many as 
20 questions, which must be answered "Yes" or "No." It can be proved 
that the players cannot identify more than 223, or 8,388,608, objects 
correctly. The reason is that the set of characteristics animal, vegeta-

Cryptanalysis). When these words are 
arranged alphabetically in the locations 
KEY[I], KEY[2]. KEY[3], . . .  ,KEY[3 1]  
of  a table. Algorithm B first compares 
the desired word x to the midpoint 
KEY[ 1 6]. which is the word ''1''. If x is 
alphabetically less than "I" . the next 
comparison will be with KEY[8]. which 
is the word "by"; if x is greater than "I", 
the next comparison will be with 
KEY[24]. which is "that". In other 
words. Algorithm B acts on the table of 
words by following a structure that 
looks like an upside-down tree, starting 
at the top and going down to the left 
when x is less and down to the right 
when x is greater [see top illustration on 
page 72]. It is not hard to see that any 
algorithm designed to search an ordered 
table purely by making comparisons can 
be described by a similar binary tree. 

The tree for binary search is defined 
implicitly in Algorithm B by arithmetic 
operations on /, rand j. It can also be 
defined explicitly by storing the tree in­
formation in the table of words itself. 
For this purpose let LEFTIJ1 be the posi­
tion in the table at which we are to look 
if word x is less than KEYIJ], and let 
RIGHTU] be the position at which we 
are to look if x is greater than KEYU]. 
For example, binary search in a table of 
3 1  words would have LEFT[ 1 6] equal 
to 8 and RIGHT[ 1 6] equal to 24. since 
the search starts at KEY[ 1 6] and then 
proceeds to either KEY[8] or KEY[24]. 
If the search is to terminate unsuccess­
fully after determining that the desired 
word x is less than KEYIJ1 or great­
er than KEYIJ], we respectively let 
LEFTIJ1 equal 0 or RIGHTIJ1 equal O. 
In the illustrations on page 72 those O's 
are represented by little square nodes at 
the bottom of the tree. 

The location of the first key to be ex­
amined in a binary tree is traditionally 
known as the root; in the 3 1 -word exam­
ple the root is 1 6. It is possible to con-
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struct search algorithms that do not start 
by looking at KEY[ 1 6]. and these may 
well be more efficient than Algorithm B 
if some words are looked up much more 
often than others. A generalized tree­
search procedure follows: 

Algorithm C; tree search. 
Cl. [Initialize.] Setj equal to the loca­

tion of the root of the binary search tree. 
C2. [Unsuccessful?] If j = O. outputj 

and terminate the algorithm. 
C3. [Compare.] If x = KEYU]. output 

j and terminate the algorithm. If 
x < KEYIJ], set j � LEFTU] and go 
back to step C2. If x > KEYU]. set 
j � RIGHTIJ1 and go back to step C2. 

Algorithm C is analogous to a pro­
grammed textbook in which. depending 
on the answer to a certain question. each 
page tells the reader what page to turn to 
next. It works on any binary tree where 
all keys accessible from LEFTIJ1 are less 
than KEYIJ1 and all keys accessible 
from RIGHTIJ1 are greater than 
KEYIJ], for all locations j in the tree. 
Such a tree is called a binary search tree. 

One of the advantages of Algorithm C 
over Algorithm B is that no arithmetic 
calculation is necessary, so that the 
search goes slightly faster on a comput­
er. The main advantage of Algorithm C. 
however. is that the tree structure pro­
vides extra flexibility because the entries 
in the table can now be rearranged into 
any order. It is no longer necessary that 
KEY[I] be less than KEY[2] and so on 
up to KEY[n]. As long as the pointers 
LEFT and RIGHT define a valid binary 
search tree. the actual locations of the 
keys in the table are irrelevant. This 
means that one can add new entries to 
the table without moving all the other 
entries. For example. the word "has" 
could be added to the 3 1 -word binary 
search tree simply by setting KEY[3 2] � 
"has" and changing RIGHTIJ1 from 0 to 

32 .  where j is the location of the key 
"had". One might think that such addi­
tions at the bottom of the tree would 
upset the balanced structure. but it can 
be shown mathematically that if new en­
tries are added in random order . the re­
sult will almost surely be a reasonably 
well-balanced tree. 

Optimum Binary Search Trees 

Since Algorithm C applies to any bi­
nary search tree. one can hand-tailor the 
tree so that the most frequently exam­
ined keys are examined first. Such tailor­
ing reduces the average time required 
for a computer to carry out the search. 
although it cannot reduce the worst-case 
time. The bottom illustration on page 72 
shows the best possible binary search 
tree for the 3 1  commonest English 
words. based on Gaines's estimates of 
their frequency. The average number of 
comparisons needed to search for x in 
this optimum binary search tree is only 
3 .43 7 .  whereas the average number of 
comparisons needed in the balanced bi­
nary search tree is 4.393 . It is worth not· 
ing that the optimum tree, which is 
based on the frequencies of the words, 
does not start by comparing x with the 
word "the". Even though "the" is by far 
the commonest English word. it comes 
so late in alphabetical order that it is too 
far from the middle of the list to serve as 
the optimum root. 

From the standpoint of conventional 
mathematics it is trivial to find the opti· 
mum binary tree for any particular set 
of n words and frequencies because 
there are only finitely many search trees. 
In principle one merely has to list all the 
trees and choose the one that works best. 
In practice. however, this observation is 
useless because the number of possible 
binary trees with n elements is equal to 
(2n)!/n!(n + I)!. where n! stands for the 
product I X 2 X 3 X ... X n. This for-
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ble and mineral bas only eigbt, or 23, possible subsets (including tbe 
null set Ii for an object witb none of tbose cbaracteristics), and tbese 
eigbt possibilities combine witb only 220 possible outcomes to tbe 
20 yes-no questions. A similar argument can be used to sbow tbat a 

searcb algoritbm asking at most 20 "less-equal-greater" questions 
cannot distinguisb more tban 220 - 1 different key values, since 1 + 
2 + 4 + 8 + + 2'9 = 220 - 1. Binary searcb is able to attain tbismax­
imum limit, tbus it is tbe most efficient searcb algoritbm of its kind. 

mula shows that there are very many 
binary trees indeed, approximately 4nj 
V(7Tn3) of them. where 7T is the famil· 
iar 3. 1 4 1 59. For example. when 1/ is 3 1 . 
the total number of possible binary trees 
is 14, 544.63 6,039,226,909. and each of 
these 14 quadrill ion trees will be opti· 
mum for some set of assumed frequen· 
cies for the 31 words. How, then, is it 
possible to show that the particular tree 
I have chosen is the best one for Gaines's 
frequencies? The fastest modern com­
puter is far from fast enough to examine 
14 quadrillion individ ual possibilities: 
if one tree were considered per micro­
second, the task would take 460 years. 

There is, however, an important prin­
ciple that does make the computation 
feasible: Every subtree of an optim um 
tree must also be optimum. In the opti­
mum binary search tree for the 3 1  com­
monest English words the subtree to the 
left of the word "of" must represent the 
best possible way to search for the 20 
words "a", "and" and so on over to 
"not".  If there were a better way, it 
would lead to a better overall tree. and 
the given tree would therefore not be 
optimum. Similarly, in that subtree the 
even smaller subtree to the r ight of "for" 
must represent the best possible way to 
search for the I I  words "from". "had" 
and so on over to "not". Each subtree 
corresponds to a set of consecutive 
words KEY[i]. KEY[i + I ], ... ,KEYU]. 
where I � i < j � n. It is possible to de­
termine all the optimum subtrees by 
finding the small ones first and doing the 
computation in order of increasing val­
ues of j - i. For each choice of indices i 
and j there are j - i + I possible roots 
of the subtree. As one proceeds up the 
tree with the computation and examines 
each possible subtree root the optimum 
subtrees to the left and right will have 
already been calculated. 

By this proced ure the best possible bi­
nary search tree for 1/ keys and freq uen-

cies can actually be found by doing 
about n3 operations. In fact, I have been 
able to improve the method even fur­
ther. so that the number of operations 
required can be reduced to n2. In the 
case of the 3 1 commonest words this 
means that the optimum binary search 
tree can be d iscovered after only 961 
steps instead of 14 quadrillion. 

I should point out that the preced ing 
paragraphs d iscuss several algorithms 
whose sole purpose is to determine the 
best binary search tree. In other words, 
the output of those algorithms is itself 
an algorithm for solving another prob­
lem! This example helps to explain why 
computer science has been developing 
so rapidly as an independent d iscipline. 
In the study of how to use computers 
properly, problems arise that are inter­
esting in their own r ight, and many of 
these problems require both a new and 
interrelated set of concepts and tech­
niques. 

It is amusing and instructive to con­
sider the worst possible b inary search 
tree for the 3 1 commonest English 
words in order to see how bad things 
could possibly become with Algorithm 
C. As in the case of the optimal trees. 
there is a way to determine such "pessi­
mal" trees in about n2 operations. For 
the 3 1  words with Gaines's frequencies 
the pessimal binary search tree requires 
Algorithm C to make an average of 
19. 1 5 8  comparisons per search. By way 
of comparison the worst arrangement of 
the keys for a sequential search requires 
Algorithm A to make an average of 
22.907 comparisons per search. Hence 
even the worst case for Algorithm C can 
never be quite as bad as the worst case 
for Algorithm A. 

Hashing 

The above algorithms for searching 
are closely related to the way people 

look for words in a dictionary. There is 
actually a much better way to search 
through a large collection of words by 
computer. It is called hashing, and it is a 
completely d ifferent approach that is 
quite unsuitable for human use because 
it is based on a machine's ability to do 
arithmetic at high speeds. The idea is to 
treat the letters of words as if they were 
numbers (a = I, b = 2, C = 3 and so on 
through z = 26) and then to hash, or 
scramble, the numbers in some way in 
order to get a single number for each 
word. The number is the "hash address" 
of the word; it tells the computer where 
to look for the word in the table. 

In the case of the 3 1 commonest En­
glish words we could convert each key 
into a number between 1 and 32 by add­
ing up the numerical values of i ts letters 
and throwing away excess multiples of 
3 2 .  For example. the hash address of 
"the" would be 20 + 8 + 5 - 32 = I, 
the hash address of "of" would be 
15 + 6 = 2 1 , and so on for the rest of 
the list. If  one is lucky, each word will 
lead to a d ifferent hash address and any 
search will be very fast. 

In general, suppose there are m loca­
tions in the computer's memory, and 
suppose we want to store n keys, where 
m is greater than n. Since n is eq ual to 3 I, 
let us say m is equal to 3 2. Suppose also 
there is a hash function h(x )  that con­
verts each possible word x into a num­
ber between 1 and m. A good hash func­
tion will have the property that h(x )  is 
unlikely to be equal to h(y). if x and yare 
different words to be put into the table. 

Unless m is much larger than n, how­
ever, nearly every hash function will 
lead to at least a few "collisions" be­
tween the values h(x )  and h(y). It is ex­
tremely improbable that n independent 
random numbers between 1 and m will 
all be different. Consider a common ex­
ample : It  is well known that when 23 or 
more people are present in the same 
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room there is a better than even chance 
that two of them will have the same 
birthday. Moreover, in a group of 88 
people it is likely that there will be three 
individuals with the same birthday. Al­
though this phenomenon seems para­
doxical to many people, the mathemat­
ics can be easily checked, and many 

seemingly impossible coincidences can 
be explained in the same way. 

to deal with the problem of collisions. 
Suppose we want to search a table for 

x but the hash address h(x) already con­
tains word y. The simplest way to handle 
the collision is to search through loca­
tions h(x), h(x) - 1, h(x) - 2 and so on 
until we either find x or come to an emp­
ty position. If the search runs off one end 

Another way to state the birthday par­
adox is to say that a hash function with 
m equal to 3 6 5  and n equal to 23 will 
have at least one collision, more often 
than not. Thus any search procedure 
based on a hash function must be able 

BINARY SEARCH TREE is implicit in Algorithm B, Here a tree 
graphically illustrates the order in which Algorithm B would probe 
an alphabetical table of the 31 commonest words in English. Starting 
at the "root," or top, of the tree, the input word x is first compared 
with the midpoint of the table, the word "I". If x is alphabetically 
smaller than "I", the search proceeds down the left branch of the tree; 
if x is greater, the search proceeds down the right branch. For ex­
ample, if x is the word ''from'', the search first finds that x is less than 

OPTIMUM BINARY SEARCH TREE shows the best order of the 
31 words in the tree, based on the relative frequency of each word es­
timated by Helen Fouche Gaines. The frequency of each word is rep­
resented by the number below it. This tree is not as well balanced as 
the tree implicitly defined by the standard binary-search algorithm 
and shown in illustration above, and the search will therefore take 
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16 

"I", then that x is greater than "by", then that x is less than "have", fi­
nally that x is equal to ''from''. If x were not in the table, the search 
would stop at one of the 32 zeros (square nodes) at bottom of the tree. 
When branches of tree are represented explicitly in computer's mem­
ory, rather than implicitly as in Algorithm B (which requires calcula­
tion of midpoints), search goes slightly faster. It also becomes easier 
to insert new information: if one wants to add "has" (word in gray) 
to tree, one inserts it in alphabetical order in place of one of zeros. 

�1.849L 
� � l�l6 
�.29� 

longer in some cases. For example, to find the word "from" in this tree 
takes six steps instead of four (path in gray and color). On the average 
the optimum tree is faster for a computer to search, however, because 
the commoner words are tested sooner. Note that although the word 
"the" is by far the most frequently used word in English, it is not 
placed at root of the tree because it is too far from center of alphabet. 
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-�roid Type 665 Positive /Negative Film is ��: a preservative agent: The Royal Photo­
graphic Society of Great Britain chose it to copy over 
1 2 ,000 rare masterpieces ( like the one below) from 
its Archives . Type 665 provides instant 3� x 4� 

inch positives for reference purposes. And negatives 
of superb quality for high fidelity reproductions. 
The negatives' high resolution permits great enlarge­
ment without loss of detail .  And their wide tonal 
range reproduces every shading nuance of the orig-

FROM THE ARCHIVES OF THE ROYAL PHOJDORAPHIC SOCIETY OF OREAT BRI'E4IN. 

TI oo rn S) [  
( 1 887, 18'k"X  11 
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inal prints . Furthermore, since the Polaroid prints 
and negatives are produced in only 30 seconds, the 
original photographs can lie, untouched, under the 
camera until the archivist knows he has satisfactory 
copies . The irreplaceable originals can then be re-

moved to safe storage under optimum conditions 
with no further handling risks. Thus, in a manner of 
speaking, some of the great pioneers in the history 
of British photography will owe their lasting repu­
tations to a (zlm made by Polaroid Corporation .  

REPRODUCED FROM A POLAROID TYPE 665 NEGATIVE ( 3lJl, X 414, ) 

o lMl [Jl [E ill S) 0 
, AT I N U M  PR I NT) 
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The new $2984* Colt. 
Isn't a Datsun. 
Isn't a Toyota. 

Its a lot of little ......... ge. 
The new Dodge Colt is 

such a lot of car, it's got M r. D. 
and M r. T. confused. Because Colt 
offers you the value you'd expect 
from this i mport, plus Dodge Colt 
sales and service coast to coast. 

47 MPG highway, 30 
MPG city. Colt wi l l  g ive you 
great m i leage, according to E PA 

estimates�* You r  m i leage may 
vary, accord ing to your car's 
cond ition, equ ipment. and you r 
driving habits. And Dodge Colt 
runs on either regu lar or u n leaded 
gas. 

Looking for a long list of 
standard features? Wel l  , you get it 
on all of our 77 Colt models. Even 
our lowest priced two-door coupe 
g ives you whitewal l  t ires, two 
recl in ing bucket seats; tinted glass 

in a l l  windows, carpeting,  adjustable 
steering colu m n ,  s imulated wood­
grai ned instrument panel ,  fou r­
speed manual transmission, q u iet 
sound i nsu lation,  tri p odometer, 
locking gas cap, and electric rear 
window defroster. 

And we offer you an optional 
automatic transmission to go with 
the standard 1 .6 l iter engine.  

So if you're thinking 
"import:' think about Dodge 
Colt. I t's not a Datsu n .  Not a Toyota. 
For $2984, it's a lot of l ittle Dodge. 
See it at you r  Dodge Colt Dealer's. 
*Manufacturer's suggested retail price, not 
i ncluding destination charge, taxes, title, and 
options. California prices higher. 
**Equip ped with standard 1 .6 l iter engine, 
four-speed manual transmission, and 3.31 
rear axle ratio. California mileage IO'lller. 
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of the table before it is completed. it 
resumes at the other end. This proce­
dure. which is known as linear probing. 
can be spelled out in an algorithm: 

Algorithm D; hashing with linear 
probing. 

D 1 .  [Initialize.] Set j � h(x}. 
D2. [Unsuccessful?] If table entry j is 

empty . output 0 and terminate the algo­
rithm. 

D3. [Successful?] If x = KEYU]. out­
put j and terminate the algorithm. 

D4. [Move to next location.] Set 
j � j - 1 ;  then if j = O. setj � m. (Loca­
tion m is considered to be next to loca­
tion 1 . )  Return to step D2. 

If x is not in the table. and if the algo­
rithm terminates unsuccessfully in step 
D2 because table entry j is empty . we 
could set KEY[J] � x using the current 
value of j. This would insert x into the 
table so that the algorithm could re­
trieve it later. A subsequent search for x 
will follow the same path as it did the 
first time. starting at position h(x}. mov­
ing to h(x} - 1 and so on. finding x in 
position j. Thus the search will proceed 
properly even when collisions occur. 

Returning to the example of the 3 1  
commonest English words. suppose the 
words are inserted one by one into an 
initially empty table in decreasing order 
of their frequency ("the" is inserted first. 
"of" is inserted second and so on). The 
result is the hash table shown in the illus­
tration on the next page. Most of the 
words appear at or near their hash ad­
dresses except for the ones that are in­
serted into the table last; the least fre­
quent word. "this" .  has been placed in 
position 8 although its hash address is 
24. because positions 9 through 24 were 
already filled by the time it was inserted. 
In spite of such anomalies the average 
number of times the table must be 
probed by Algorithm D in order to find 
a word turns out to be only 1 .666-less 
than half the average number of com­
'parisons required to find the word with 
the optimum binary search tree. Of 
course. the time needed to compute h(x} 
in step Dl  must be added to the time for 
probing the table. For large collections 
of data. however. the hashing method 
will significantly outperform any bina­
ry-comparison algorithm. 

In practice one would almost never let 
a hash table get as full as it does in the 
example. The number m of table posi­
tions available is usually chosen to be so 
large that the table will never become 
more than 80 or 90 percent full. It can be 
shown that the average number of 

"PESSIMAL" TREE shows the worst possi­
ble binary search tree for searching for tbe 
31 commonest English words_ This tree bas 
lost advantage of tree structure because one 
branch of each comparison is always "dead." 

1 5 .568 �--""' 
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1 THE ( 1 ) 
2 HAVE (4) 

3 TO (3) 
4 HIS  (4) 
5 
6 BE (7) 
7 FOR (7) 
8 THIS (24) 
9 I (9) 

1 0  BUT ( 1 1 ) 
1 1  WAS ( 1 1 ) 
1 2  HAD ( 1 3) 
1 3 H E  ( 1 3) 
1 4 FROM (20) 
1 5  AT (2 1 )  
1 6 NOT ( 1 7 )  
1 7 THAT ( 1 7 )  
1 8 WHICH ( 1 9) 
1 9  AND ( 1 9) 
20 AS (20) 
2 1  O F  (2 1 )  
22 ON (29) 
23 IN  (23) 
24 ARE (24) 
25 YOU (29) 
26 BY (27) 
27 WITH (28) 
28 IS (28) 
29 IT  (29) 
30 HER (31 ) 
31 OR ( 1 )  
32 A ( 1 )  

"HASH" TABLE provides a better way for a 
com puter to search through large files of data. 
For each word x one uses a computer's ability 
to do high-speed arithmetic by computing a 
hash address h(x), where the search for x is 
to start. The hash address for each of the 31 
commonest words is shown in parentheses af­
ter each word; in this example each hash ad­
dress was obtained by adding the numerical 
value of each letter (a = 1, b = 2 and so on up 
to z = 26) and discarding excess multiples of 
32. Sometimes two different words x and y 
have the same hash address h(x), so that they 
"collide." If x is not stored in position h(x), the 
search continues upward through positions 
h(x) - 1, h(x) - 2 and so on. For example, the 
hasb address of "his" is h + i + s, or 8 + 9 + 
19 - 32 = 4. The hash address of "have" is also 
4. To search for "have" the algorithm looks 
first in position 4 (light gray), then in position 
3 (dark gray) and finally in position 2 (color), 
where "have" is located. If word x is not in ta­
ble, search for it will stop at empty position 5. 
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probes needed to find one word out of 1/ 
equally likely words that have been ran­
domly inserted into a table of size m is 
1 + [(1/ - 1 ) l m  + ( 1/ - 1 )( 1/ - 2 ) / m 2  + 

( 1/ - 1 ) ( 1/ - 2 ) ( 1/ - 3 ) / m 3  + . ' ] 1 2 .  Let 
the symbol a stand for 1/ 1 m. the ful lness 
ratio or "load factor" of the table. As 1/ 
approaches infinity it can be shown that 
the average number of probes required 
to find any word x in a table approach­
es the value I + (a + a2 + a3  + . ' ) 1 2 .  
which i s  equal t o  [ 1 + 1 /( 1  - a)] 1 2 .  
Furthermore. the true average number 
of probes will always be less than this 
limiting value. Therefore when the table 
being searched is 80 percent full. Algo­
rithm 0 makes fewer than three probes 
per successful search on the average . 

It is important to note that the stated 
upper limit on the average number of 
probes per successful search holds for 
all tables that are eq ually full .  no matter 
how large the table is. The same cannot 
be said about binary-comparison algo­
rithms. because their average running 
time per successful search will grow ar­
bitrarily large as the number 1/ of words 
to be searched increases .  

Improving Unsuccessful Searches 

My statements in the preceding para­
graphs about the small number of 
probes required with Algorithm D ap­
ply only to cases where x is actually 
found in the table. If  x is not present. the 
average number of probes needed to 
ascertain that fact will be larger . 
namely 1 + [2n l m + 3 1/ (n  - I )  1 m 2  
+ 4n(n - l )(n - 2 ) 1  rn3 + ' ] 1 2 ;  when 
n is  large. this number is approximately 
equal to [I + 1 /( 1 - a)2] 12. In other 
words.  an average unsuccessful search 
in a large hash table that is 80 percent 
full requires nearly 13 probes. More­
over . in my example of the 3 1  words in 
32 spaces. note that all unsuccessful 
searches must terminate at the single 
empty position 5 regardless of the loca­
tion of the starting address h(x). A pre­
cisely analogous situation occurred with 
the sequential search Algorithm A . .  
where a l l  unsuccessful searches end  at 
position O. 

In 1 973  O. Amble of the University of 
Oslo noted that the problem of unsuc­
cessful search could be alleviated by 
combining the concept of hashing with 
the concept of alphabetical order. Sup­
pose the 3 I commonest English words 
are inserted into the table in decreasing 
alphabetical order instead of in decreas­
ing order of frequency. Since the table is 
probed by starting at the address h(x) 
and moving to h(x) - I and so on. all 
words lying between the address h(x) 
and the actual location of x must be al­
phabetically greater than x lest there be 
a collision. A search for x can therefore 
be terminated unsuccessfully whenever 
a word alphabetically less than x is en-

co untered .  In other words. the following 
algor ithm can be used :  

Algorithm E:  l inear probing in  an  or­
dered hash table. This algorithm as­
sumes that KEY[;l is 0 when entry j is 
empty . and that all words x have a nu­
merical value that is greater than O. 

E 1 .  [Initialize.] Set j - h(x). 
E2 . [Unsuccessful?] If  KEYU] < x. 

output 0 and terminate the algorithm. 
E3 . [Successful ?] If  KEYU] = x. out­

put j and terminate the algorithm. 
E4. [Move to next .] Set j - j - 1 ;  then 

if j = O.  set j - m. Return to step E2 . 

The advantage of Algorithm E is il­
l ustrated in the ordered hash table on 
page 80. S uppose one wants to deter­
mine if "has" is one of the 3 I common­
est English words. Its hash address is 
8 + I + 19 = 2 8 .  With Algorithm E the 
search terminates in six steps when it 
reaches j  = 22 ("by") instead of continu­
ing through the table until it encounters 
the empty table entry at j = 5. 

In an ordered hash table the average 
number of probes per unsuccessful 
search is red uced to 1 + [n l m  + 
n (n - I )  I m 2  + n (n - I )  (n - 2) / m 3 
+ . .  ] 1 2. and this number is always less 
than [I + 1 / ( 1 - a)] 1 2. Thus the limit 
for a successful search and the limit for 
an unsuccessful one are identical. On 
the average . when an ordered hash table 
is 80 percent full .  Algorithm E will 
make less than three probes regardless 
of the size of n .  

This i s  all very well i f  the ordered 
hash table has been set up by inserting 
the keys in decreasing alphabetical or­
der as I have described it. In practice . 
however . one cannot always assume 
that the words of a table have been en­
tered in such a manner .  Tables often 
grow dynamically with use . and new 
words enter in random order. Although 
the structure of a binary tree (Algorithm 
C) and of an unordered hash table (Al­
gorithm 0) will handle dynamic growth 
with ease. the structure of an ordered 
hash table (Algorithm E) is not so obvi­
ously adaptable. Fortunately there is a 
very simple algorithm for inserting a 
new word into an ordered hash table : 

Algorithm F; insertion into an or­
dered hash table. This algorithm puts a 
new word x into an ordered hash table 
and appropriately rearranges the other 
entries so that searching with Algorithm 
E remains valid. 

F I .  [Initial ize.] Set j - h(x) . 
F2.  [Compare.] If KEY[;] < x. inter­

change the values of KEY[;l and x. 
(That is. set x to the former value of 
KEYU] and set KEYU] to the former 
value of x. ) 

F 3 .  [Done ?] If x = O. terminate the 
algorithm. 

F4 .  [ Move to next . ]  Set j - j - I ;  then 
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the Bang & Olufsen Beosystem 1 900. 
It's so simple, most people don't get it. 

An alternative to the airplane cockpit school of audio 

design. I t 's not knobs and dials that make su perb sou nd, it's 
superb engi neer ing.  
I n t h e  B e o s y s t e m 
1 900, there is almost 
none of the former ,  
and a g reat deal  of  
the latter. 

A few cases in  point : 
Your finger, the component. With the Beomaster® 

1 900, you become part of the syste m Al l  major controls are 
electronical ly activated by a l ight touc h  of you r finger on the 
front control panel. The instant you touch it an i l l umi nated 
i ndicator appears for each function, you always know the 
operational status of the 1 900, even in  the dark. 

For details, look inside. Secondary controls, for bass, 

Thanks for the memory. 

The Beomaster 1 900 also a l lows 
you one unforgettable conven­
ience. You may pre-set the vol­
ume level and pre-tu ne up to five 
FM stat ions. Then, at the instant 
you want it you have the station 
you want at the level you want. 
Why clutter you r memory when 
the syste m has one? 

treble,  and FM tu ning,  are 
o u t  of s i g h t ,  l i t e r a l l y ­
c o n c e a l e d  b e h i n d  a n  
aluminu m door that opens 
and c loses i n  a manner 
remin iscent of  the Starship 
"Enterprise." 

lr '� • • , 
.� � � .,. 
"" '" '" ." .. .. .. .. .. _ '"  _ "  II' -... - .. - .. .. 

.... ' flo4 FIolJ "'"  � 

The turntable, taken to Its logical conclusion. The 
Beogram® 1 900 tu rntable's very low mass tone arm and MMC 
4000 cartr idge work magnif icently wi th each other, because 
they are made to work with each other, by eng ineers who ta lk 

t o  each ot h e r, l i s ten  to 
each other, and design for 
each other. I f  that str i kes 
you as overwh e l m i n g l y 
l o g i c a l ,  y o u ' d  b e  s u r ­
p r i s e d  h o w  o t h e r  t u r n ­
tables are put together. 

A scratched record is forever. (HoW to protect your 

investment.) No matter how little you 've spent on you r record 
col lection, chances are some of it i s  I r replaceable, wh ich 
makes it pr iceless. I t  makes sense to protect It -the way ou r 
MMC 4000 cartr idge does with an effective t ip mass of only 0.4 
mi l l igrams. (A t iny square of th is  page, th is big 0 weighs 1 .0 
mi l l igram) This results in a touc h  so del i cate t hat it's 
almost i mpossible to scratch you r records whi le playi ng 
them It a lso reduces wear considerably enabl ing you r 
records to cont inue working wel l  past normal ret i rement age. 

We don't recommend this, 
but with t he MMC 4 000 
cartr idge, it won't hurt .  

• •••• 

o 
It's not size that counts. It's perfor­

mance. Can a speaker smal l  enough to fit on 
an eight- inch shelf (or unobtrus ive enough to 
hang on a wal l )  i m press your  a u d i o p h i l e  

fr iends? Yes, i f  they keep their  eyes c losed 
,.--.--__..mn-U· · · and thei r  ears open. 

The missing link: Our 100% solution. Phase d i stor ­
tio n -a pri nc ipal  v i l la in in speaker performance -was iden­
tif ied in  1 973 by Bang & Olufsen eng ineers. The f i rs t  pract ical 
solut ion to the probl em was presented i n  London i n  1 97 5  to 
the i nternational organization, the Audio Engineer ing Society, 
by Bang & Olufsen engi neers. 

Today that solut ion is  an i ntegral part of ou r Beovox® 
Phase-Link® Loud speakers (Pat. Pend. ). 

If a child can operate it, will 

an adult buy it? Because usabil­
ity is at the heart of the Beosystem 
1 900's design, i t  is  true that a ch i ld 
can o p e rate i t .  But  o n l y  a very 
soph i st icated ad u lt can t ru ly  ap­
preciate i t .  Welcome. Write to us at : 
Bang & Olufsen of Amer ica, 5 1 5  
Bu sse Road, Dept. 1 3 K  Elk Grove 
Vi l lage, I l l i nois 60007, we' l l  be happy 
t o  s e n d  you ou r b r o c h u re a n d  
dealer l ist . 

Bang & Olufsen 
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Genuine 
Unitron 
telescopes 
for un([er 
S200! 

Un i t ron 80mm 
spotti ng' scope . 

Exp l o re the moons of J u p i ter  or look 
at a sq u i rre l t h rough the extrao rd i na ry 
opt ics of a gen u i ne U n i t ron  te lescope ! 
The two- i n c h  U n i t ron  refractor for 
v iew i n g  the heavens i s  only $1 95 com­
p l ete, and the new 80m m  U n itron 
w idef i e l d  spott i n g  scope for te rres­
t r ia l  observat ions  starts at only $90 ! 

A n ice hobby g i ft for young and o ld ! 
Send coupon for  add i t iona l  i nfor­

mat ion and f ree cata log .  

U NI T/?ON The value l ine 

1-------------, 
, Un i t ron Instruments. I nc .  1 , SUb. of Ehren re ich Photo-Opt ica l l n dus t r ies . l n c ' l 
1
1 01 Crossways Park West. Wood b u ry.  NY  11797 
USA (51 6) 364-8046 Dept .  SA -4 1 

I I 
I I 
I Name I please pr int  
' Address I 
I I 
I �w I 
I . I �t::e 

_ _ _ _ _ _ 
..!� 

_ _ _
_ 

:J 
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if j = O. again set j � m.  Go back to step 
F2. 

If we choose to insert the word "has" 
into the ordered hash table of the 3 1  
commonest English words by means of 
Algorithm F. the procedure would place 
"has" in position 22.  making room for it 
by moving "by" from position 22 to po­
sition 1 8 . moving "at" from position 1 8  

1 THE ( 1 )  

2 HAVE (4) 

3 TO (3) 

4 H IS  (4) 

5 

6 BE (7) 

7 FOR (7) 

8 AND ( 1 9) 

9 I (9) 

1 0  BUT ( 1 1 ) 

1 1  WAS ( 1 1) 
1 2  HAD ( 1 3) 

1 3  H E  ( 1 3) 

1 4  ARE (24) 

1 5 AS (20) 

1 6  NOT ( 1 7) 

1 7  THAT ( 1 7) 

1 8  AT (21 ) 

1 9 WH ICH ( 1 9) 

20 FROM (20) 

21 OF (2 1 )  

,. 22 BY (27) 
23 IN (23) 
24 THIS (24) 
25 IS (28) 
26 IT (29) 
27 ON (29) 
28 WITH (28) 
29 YOU (29) 

30 A ( 1 )  

3 1 H E R  (3 1 )  

32 OR ( 1 )  

ORDERED HASH TABLE, which combines 
the concept of hashing with the advantage of 
alphabetical order, reveals more quickly when 
the input word is not present. Here all the 
words between position h(x) and the actual 10-
cation of x are alphabetically greater than x. 
Thus an unsuccessful search need not stop 
only at the empty position 5; it will also stop 
as soon a� a word alphabetically less than x is 
encountered. If desired word x is "has", with 
hash address 28 (light gray), search will stop 
when it reaches "by" at position 22 (dark gray). 

to position 1 5, moving "as" from posi­
tion 1 5  to position 1 4, moving "are" 
from position 1 4  to position 8 and final­
ly moving "and" from position 8 to the 
empty position 5. That may seem like a 
lot of work, but it takes only slightly 
longer than the task of inserting "has" 
into an unordered hash table using Al­
gorithm D. In general the insertion of a 
word into an ordered hash table takes 
the same number of iterations as the in­
sertion of the same word into an unor­
dered hash table. Furthermore, the aver­
age number of words in the table that 
must be interchanged by way of step 
F2 to accommodate the new word is 
(n - 1 )  1 2m + 2 (n - 1 )  (n - 2) 1 3m2  
+ 3 (n - 1 )(n - 2)/4m3 + " , which is 
approximately equal to 1 / ( 1  - a) + 
[log.( 1 - a)]la . where e is the familiar 
2. 7 1 828 .  Thus inserting words by Algo­
rithm F is quite a reasonable task. 

In this specific case we actually should 
not have inserted "has" into the table 
because hash tables ought to have at 
least one empty position. By coinci­
dence the smallest possible word in al­
phabetical order. "a", is present in this 
completely full table. Hence linear 
probing with Algorithm E will still work 
correctly in all cases. If "a" were not in 
the table, however, an empty position 
would be needed in order to avoid end­
less searching when the input word x 
was equal to "a". 

One of the most surprising properties 
of ordered hash tables is that each one is 
unique. If we use Algorithm F to build 
an ordered hash table from any set of 
words, the same table will be obtained 
regardless of the order in which the 
words are inserted. The reader may find 
it entertaining to prove this fact for him­
self. 

Conclusion 

My discussion of ways to search for 
information stored in a computer's 
memory is intended to illustrate several 
important points about algorithms in 
general. As we have seen, an algorithm 
must be stated precisely, and it is not as 
easy to do that as one might think. When 
one tries to solve a problem by comput­
er, the first algorithm that comes to 
mind can usually be greatly improved. 
Data structures such as binary trees are 
important tools for the construction of 
efficient algorithms. When one starts to 
investigate how fast an algorithm is, or 
when one attempts to find the best possi­
ble algorithm for a specific application, 
interesting issues arise and one often 
finds that the questions have subtle an­
swers. Even the "best possible" algo­
rithm can sometimes be improved if we 
change the ground rules. Since comput­
ers "think" d ifferently from people, 
methods that work well for the human 
mind are not necessarily the most effi­
cient when they are transferred to a 
machine. 
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