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Recently, thanks to a Freedom of Information request, Chris Whong received
and made public a complete dump of historical trip and fare logs from NYC
taxis. It’s pretty incredible: there are over 20GB of uncompressed data
comprising more than 173 million individual trips. Each trip record includes
the pickup and dropoff location and time, anonymized hack licence number
and medallion number (i.e. the taxi’s unique id number, 3F38, in my photo
above), and other metadata.

These data are a veritable trove for people who love cities, transit, and data
visualization. But there’s a big problem: the personally identifiable
information (the driver’s licence number and taxi number) hasn’t been
anonymized properly — what’s worse, it’s trivial to undo, and with other
publicly available data, one can even figure out which person drove each trip.
In the rest of this post, I’ll describe the structure of the data, what the
person/people who released the data did wrong, how easy it is to
deanonymize, and the lessons other agencies should learn from this. (And
yes, I’ll also explain how rainbows fit in).

The NYC taxi data consist of a number of CSV-files, each with lines that look
like this:

Each of these columns correspond to the following fields:

6B111958A39B24140C973B262EA9FEA5,D3B035A03C8A34DA17488129DA581EE7,VTS,5,,2013-12-03 15:46:00,2013-12-03 16:47:00,1,3660,22.71,-73.813927,40.698135,-74.093307,40.829346

medallion,hack_license,vendor_id,rate_code,store_and_fwd_flag,pickup_datetime,dropoff_datetime,passenger_count,trip_time_in_secs 

https://tech.vijayp.ca/?source=post_page-----f6bc289679a1--------------------------------
https://twitter.com/@chris_whong
http://chriswhong.com/open-data/foil_nyc_taxi/
https://en.wikipedia.org/wiki/Comma-separated_values


It’s pretty obvious what format most of the fields are in (lon/lat, timestamp)
but the first two columns demonstrate that the government folks clearly
intended to anonymize the medallion and licence numbers. It’s obvious that
the alphanumeric codes are not purely random, the same taxi and same
driver always has the same code throughout the data. This isn’t necessarily a
problem — in fact, preserving this property is often of critical importance
when anonymizing data. Imagine a search engine engineer who wants to
analyse user behaviour in aggregate: it’s important that the same user has
the same code throughout the set of logs that are being analysed, so that
you can see what a user does over time. It’s obviously also critical that it’s
not possible to go backwards from the code to the user’s name.

Someone on Reddit pointed out that one specific driver seemed to be doing
an incredible amount of business. When faced with anomalous data like that,
it’s good practice to weed out data error before jumping to conclusions
about cheating taxi drivers. Also, I couldn’t shake the feeling that there was
something about that encoded id number:
“CFCD208495D565EF66E7DFF9F98764DA.” After a little bit of poking
around, I realised that that code is actually the MD5 hash of the character ‘0’.
This proved my suspicion that this was actually a data collection error, but
also made me immediately realise that the entire anonymization process was
flawed and could easily be reversed.

A cryptographically secure hashing function, like MD5 is a one-way function:
it always turns the same input to the same output, but given the output, it’s
pretty hard to figure out what the input was as long as you don’t know
anything about what the input might look like. This is mostly what you’d like
out of an anonymization function. The problem, however, is that in this case
we know a lot about what the inputs look like.

In NYC, taxi licence numbers are 6-digit [Edit: (6-digit numbers may start
with any digit and are sometimes zero-padded)], or 7-digit numbers starting
with a 5. That means that there are only about 3M possible taxi licence

http://www.reddit.com/r/bigquery/comments/28ialf/173_million_2013_nyc_taxi_rides_shared_on_bigquery/cicr3n2
https://en.wikipedia.org/wiki/Cryptographic_hash_function


numbers. Similarly, medallion numbers conform to a very specific pattern:

one number, one letter, two numbers. For example: 5X55
two letters, three numbers. For example: XX555
three letters, three numbers. For example: XXX555

[Edit: I fixed my math thanks (thanks Paul)] There are about 1000*27²*26 =
18954000 or ~19M possible medallion numbers. So, by calculating the md5
hashes of all these numbers (only 22M!), one can completely deanonymise
the entire data. Modern computers are fast: so fast that computing the 22M
hashes took less than 2 minutes. The resulting table of hashed-data to input
data is called a Rainbow Table. [Edit: people have pointed out that this may
not meet the exact requirements to be called a rainbow table]

It took a while longer to de-anonymize the entire dataset, but thanks to
Yelp’s MRJob, I ran a map-reduce over about 10 computers on EMR and had
it done within an hour. There’s a ton of resources on NYC Taxi and Limousine
commission, including a mapping from licence number to driver name, and a
way to look up owners of medallions. I haven’t linked them here but it’s easy
to find using a quick Google search.

Here are a few de-anonymized lines I picked at random:

Security researchers have been warning for a while that simply using hash
functions is an ineffective way to anonymize data. In this case, it’s
substantially worse because of the structured format of the input data. This
anonymization is so poor that anyone could, with less then 2 hours work,
figure which driver drove every single trip in this entire dataset. It would be
even be easy to calculate drivers’ gross income, or infer where they live.

There are a number of ways these data could have been better anonymized.

9Y99,5296319,VTS,1,,2013-12-06 00:07:00,2013-12-06 00:16:00,5,540,1.85,-73.97953,40.776447,-73.982254,40.754925 

https://twitter.com/duckblog
https://github.com/vijayp/nyc-taxi/blob/master/create_hashes.py
https://github.com/vijayp/nyc-taxi/blob/master/deanonymise.py
https://github.com/Yelp/mrjob
https://aws.amazon.com/elasticmapreduce/
https://www.truste.com/blog/2013/04/16/data-anonymization/


Two good ones include:

assigning a totally random number to each hack licence number and
medallion number once, and re-using it throughout the dump file
creating a secret AES key, and encrypting each value individually

[Edit: As always, things are more complicated than they seem at first. The
strategies described above will anonymise the numbers of the licences and
taxicabs, but commenters have pointed out that there are a number of other
ways in whch PII may be reconstructed. The most interesting is Narayanan
and Shmatikov’s algorithm. NYC is dense enough that it may be much more
challenging to target specific passengers using these data, however.
Anonymizing data is really hard.]

The cat is already out of the bag in this case, but hopefully in the future,
agencies will think carefully about the method they use to anonymize data
before releasing it to the public.

Edit: this is up on hackernews. Please feel free to comment there

https://news.ycombinator.com/item?id=7927025
https://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf
https://news.ycombinator.com/item?id=7926358

