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Relations

e a relation R on a set R" is a subset of R" x R"

e domR = {z|3Jy (z,y) € R}

e overload R(x) to mean the set R(z) = {y | (z,y) € R}

e can think of R as ‘set-valued mapping’, i.e., from dom R into 2R"
e when R(x) is always empty or a singleton, we say R is a function

e any function (or operator) f : C' — R™ with C' C R" is a relation
(f(z) is then ambiguous: it can mean f(z) or {f(z)})

Relations



Examples

e empty relation: ()

e full relation: R” x R"

e identity: I = {(z,x) | x € R"}

e zero: 0= {(z,0) | x € R"}

e {zcR* |2} +a3 =1}

o {zcR? |2 <y}

e subdifferential relation: 0f = {(x,0f(x)) | z € R"}

Relations



Operations on relations

inverse (relation): R~ = {(y,2) | (z,y) € R}
— inverse exists for any relation
— coincides with inverse function, when inverse function exists

e composition: RS = {(x,y) | 3z (z,2) € S, (z,y) € R}
scalar multiplication: aR = {(z,ay) | (x,y) € R}
addition: R+ S ={(z,y+2) | (z,y) € R, (z,2) € S}

Relations



Example: Resolvent of operator

for relation R and X € R, resolvent (much more on this later) is relation
S=(I+AR)!
o I+ AR ={(z,z+ \y) | (z,y) € R}

e S=({I+AR)'={(z+ \y,2) | (z,y) € R}
o for A\#0, S ={(u,v) | (u—v)/X € R(v)}

Relations



Generalized equations

goal: solve generalized equation 0 € R(x)

ie., find z € R™ with (z,0) € R

solution set or zero setis X = {xr e domR | 0 € R(z)}

if R=0f and f: R" — R", then 0 € R(z) means x minimizes f

Relations
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Monotone operators

e relation I on R" is monotone if
(u—v)'(x—y) >0 forall (z,u), (y,v) € F

e F'is maximal monotone if there is no monotone operator that properly
contains it

e we'll be informal (i.e., sloppy) about maximality, other analysis issues

e solving generalized equations with maximal monotone operators
subsumes many useful problems

Monotone operators



Maximal monotone operators on R

F' is maximal monotone iff it is a connected curve with no endpoints, with
nonnegative (or infinite) slope

Monotone operators



Some basic properties

suppose F' and G are monotone

e sum: F + (G is monotone

e nonnegative scaling: if o > 0, then aF’ is monotone

e inverse: F~! is monotone

e congruence: for T € R"*™, TTF(T%) is monotone (on R™)

e zero set: {x € R" |0 € F(x)} is convex if F' is maximal monotone

affine function F(z) = Ax + b is monotone iff A + AT =0

Monotone operators



Subdifferential
F(z) = 0f(x) is monotone

e suppose u € df(x) and v € Of (y)
e then

F) = f@)+u(y—=2),  fla) = fly) +v" (@ -
e add these and cancel f(y) + f(z) to get

0< (u—v)"(z~y)

if f is convex closed proper (CCP) then F(z) = 0f(x) is maximal monotone

Monotone operators 10



KKT operator

e equality-constrained convex problem (with A € R™*™)

minimize  f(z)
subject to Ax =1b

with Lagrangian L(z,y) = f(z) + y* (Az — b)
e associated KKT operator on R™ x R™:

o= [ GHEn ] [ s ][]

e zero set of F is set of primal-dual optimal points (saddle points of L)

o KKT operator is monotone: write as sum of monotone operators

=[5 ][5

Monotone operators 11



Multiplier to residual mapping

e same equality-constrained convex problem

e define F(y) = b — Az with © € argmin, L(z,y) (can be set-valued)
e —F(y) is primal residual obtained from dual variable y

e interpretation: F(y) = 9(—g)(y), where g is dual function

e zero set is set of dual optimal points

e multiplier to residual mapping F' is monotone

o quick proof: F(y) =b— A(0f)~'(=A"y) (or use F(y) = d(—g)(y))

Monotone operators 12
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Nonexpansive and contractive operators

e F' has Lipschitz constant L if
[F(z) = F(y)ll2 < Lllz — yll2 for all z, y € dom F’

e for L =1, we say F is nonexpansive

e for L < 1, we say F'is a contraction (with contraction factor L)

Nonexpansive and contractive operators 13



Properties

e if F' and G have Lipschitz constant L, so does
0F 4+ (1 - 0)G, 6 €[0,1]

e composition of nonexpansive operators is nonexpansive
e composition of nonexpansive operator and contraction is contraction

e fixed point set of nonexpansive F' (with dom f = R"™)
{z| F(z) =}

is convex (but can be empty)

e a contraction has a single fixed point (more later)

Nonexpansive and contractive operators
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Resolvent and Cayley operator

e for A € R, resolvent of relation F' is
R=(I+ )\F)_1

e when A > 0 and F' monotone, R is nonexpansive (thus a function)
e when A\ > 0 and F' maximal monotone, dom R = R"

o Cayley operator of F'is
C=2R—-T=2I+\F)"~1T

e when A > 0 and F' monotone, C' is nonexpansive

e we write Rp and Cp to explicitly show dependence on F

Resolvent and Cayley operator
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Proof that C is nonexpansive

assume A > 0 and F' monotone
e suppose (z,u) € R and (y,v) € R, ie,
u—+ AF(u) 3 x, v+ AF(v) 3y

e subtract to get u —v + A(F(u) — F(v)) 22—y
e multiply by (u — v)T and use monotonicity of F to get

lu—vll3 < (z =) (u—20)

e so when = =y, we must have u = v (i.e., R is a function)

Resolvent and Cayley operator 16



Proof (continued)

e now let's show C' is nonexpansive:

IC@) —CWlz = lI(2u—z)—(2v-y)II3
= [2(u—v) = (= = p)l3
= Allu—vl3 —4(u—v)"(z —y) + |z - yll3

lz = yl3

IN

using inequality above
e R is nonexpansive since it is the average of I and C:

R=(1/2) + (1/2)2R - I)

Resolvent and Cayley operator
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Example: Linear operators

e linear mapping F'(z) = Ax is

— monotone iff A+ AT =0

— nonexpansive iff [|Al]s <1
eX>0and A+ AT -0 =

— I+ A\A nonsingular

= [[Ralla = (T + 2A4) 2 < 1

= ICall2 = [2(1 + AA) ™" = Il <1

o for matrix case, we have alternative formula for Cayley operator:

21+ XA —T = (I + XA - )\A)

1-X
cf. bilinear function T )\Z, which maps

{s€C|Rs>0} into {se€C]||s|] <1}

Resolvent and Cayley operator 18



Resolvent of subdifferential: Proximal mapping

e suppose z = (I + \0f)~1(x), with A > 0, f convex
e this means z + \9f(z) 2 «

e rewrite as
0€ 0. (f(2)+ (1/2N)]|z — z]3)

which is the same as
= = argmin (f(u) + (1/23) |u — 2[3)

e RHS called proximal mapping of f, denoted prox, ;(z)

Resolvent and Cayley operator 19



Example: Indicator function

e take f = I, indicator function of convex set C

e Of is the normal cone operator

B @ .%QC
NC(J;)—{ {w|wl(z—2)<0VzeC} zeC

e proximal operator of f (i.e., resolvent of N¢) is

(I +X0Ic) M (z) = arglrtnin (Ic(u) + (1/20)|Ju — z|3) = He(z)

where Il is (Euclidean) projection onto C

Resolvent and Cayley operator 20



Resolvent of multiplier to residual map

o take F' to be multiplier to residual mapping for convex problem

minimize  f(x)
subject to Ax =1b

e F(y) =b— Ax where z € argmin,, L(w, y)

e z=(I+\F)"1(y) means z + A\F(2) > y

e 2+ \b— Az) =y for some z € argmin,, L(w, 2)

e write as
z=y+ XAz —D), of(x) +AT230

Resolvent and Cayley operator
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Resolvent of multiplier to residual map

e write second term as 0f(z) + ATy + AAT(Az — b) 5 0, so
x € arglrunin (f(w) +y" (Aw — b) + (A/2)||Aw — b]|3)
e function on right side is augmented Lagrangian for the problem
e so z = R(y) can be found as
v = argmin (F(w) + 5" (Aw - b) + (A/2)][Aw - b[Z)
y —|—w/\(Ax —b)

z

Resolvent and Cayley operator 22



Fixed points of Cayley and resolvent operators

e assume F' is maximal monotone, A > 0

e solutions of 0 € F(x) are fixed points of R:
F(x)20 < x+AF(z) 32 < x=(I+\F)"'(z) = R(2)
e solutions of 0 € F'(x) are fixed points of C:
x=R(z) < x=2R(x)—2z=C(x)

o key result: we can solve 0 € F(z) by finding fixed points of C or R

e next: how to actually find these fixed points

Resolvent and Cayley operator 23
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Contraction mapping theorem

also known as Banach fixed point theorem
e assume F is contraction, with Lipschitz constant L < 1, dom F' = R"

the iteration

:Ijk+1 = F(l’k)

converges to the unique fixed point of F

proof (sketch):
— sequence z” is Cauchy: ||z**™ — 2%z < ||zFT" — 2"||2/(1 — L)
— hence converges to a point z*
— z* must be (the) fixed point

Fixed point iterations

24



Example: Gradient method

e assume f is convex, mI < V2f(x) < LI
(i.e., f strongly convex, Vf Lipschitz)

e gradient method is

=2k — oV (b)) = F(2")
(fixed points are exactly solutions of F(z) = x)
DF(z) = I — aV2f(x)
F'is a Lipschitz with parameter max{|l — am/|, |1 — aL|}
e F'is a contraction when 0 < oo < 2/L

e so gradient method converges (geometrically) when 0 < o < 2/L

Fixed point iterations
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Damped iteration of a nonexpansive operator

e suppose F' is nonexpansive, dom F' = R", with fixed point set
X ={z| F(z) =z}
e can have X = () (e.g., translation)

e simple iteration of F' need not converge, even when X # ()
(e.g., rotation)

e damped iteration:
2F = (1 - 0%)2® + 08 F(2")

0% € (0,1)
e important special case: % = 1/2 (more later)

e another special case: #¥ = 1/(k + 1), which gives simple averaging

ot = (o0 o PR + PR )

Fixed point iterations
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Convergence results

e assume F is nonexpansive, dom F' = R", X = (), and
> 051 -06%) =0
k=0

(which holds for special cases above)
e then we have
min dist(z’, X) —» 0
§=0,....k
i.e., (some) iterates get arbitrarily close to fixed point set, and

min ||[F(27) — 27|y — 0
5=0ersk

i.e., (some) iterates yield arbitrarily good ‘almost fixed points’

Fixed point iterations

27



Idea of proof

e F(2%) is no farther from z* than z* is (by nonexpansivity)

k+1

® SO is closer to z* than z* is

Fixed point iterations 28



Proof

e start with identity
10a + (1 = 0)b]I5 = Ollall3 + (1 — O)[[b]3 — 61— )[[b - a3

e apply to 2P+l — 2% = (1 — 0%)(zF — %) + 6% (F(2F) — 2*):

k+1 %2

|2 "2
= (1=0N)e" = 2|5+ 05| P () = 2[5 — 0" (1 = 0" F (") — 2713
< o = a3 - 08 (1 = 0N F(a*) — 2F3

using [|[F(a*) — a*[l2 < [|2* — 2|2

Fixed point iterations 29



Proof (continued)

e iterate inequality to get

E

D FA-)F @) =23 < Jla® —a* |3 — [|l2* T — 2?13
§=0

o if |F(27) — 27|y > efor j=0,...,k, then

og =3
gm0 (1 —09)

e RHS goes to zero as k — oo

Fixed point iterations

30
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Damped Cayley iteration

e want to solve 0 € F(x) with F' maximal monotone
e damped Cayley iteration:
2= (1= 082k 4 0RO (2F)
= (1-6052" +0*2R(") — I(2F))
(1 —20%)2* + 20 R(2")

with 6% € (0,1) and Y, 6%(1 — %) =
e converges (assuming X # () in sense given above
e important: requires ability to evaluate resolvent map of F’

Proximal point algorithm and method of multipliers
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Proximal point algorithm

e take #¥ = 1/2 in damped Cayley iteration

e gives resolvent iteration or proximal point algorithm:
2* = R(a*) = (I + \F)7(2")
o if F'=0f with f convex, yields proximal minimization algorithm
P o= prox; ; , (a%) = argmin (f(x) + (1/2)) 2 — 2% 3)
z
can interpret as quadratic regularization that goes away in limit

e many classical algorithms are just proximal point method applied to
appropriate maximal monotone operator

Proximal point algorithm and method of multipliers
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Method of multipliers

e take I’ to be multiplier to residual mapping for

minimize  f(x)
subject to Ax =1b

e F(y) =b— Az with 2 € argmin,, L(z,y)

e proximal point algorithm becomes method of multipliers:
" = argmin (f(w) + (¥F)" (Aw — b) + (A/2) ]| Aw — b]3)

yk+1 : yk + A(Axk-i-l _ b)

Proximal point algorithm and method of multipliers 33



Method of multipliers

first step is augmented Lagrangian minimization
e second step is dual variable update
e y¥ converges to an optimal dual variable

primal residual Az* — b converges to zero

Proximal point algorithm and method of multipliers
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Method of multipliers dual update

optimality conditions (primal and dual feasibility):

Az —b=0, of(x)+ ATy >0

k+1

from definition of = we have

0 € Of(a"th) 4+ ATyk £ XAT (AzF+L —b)
— 8f(l‘k+l)+ATyk+1

so dual update makes (z**1,y**1) dual feasible

primal feasibility occurs in limit as £ — oo

Proximal point algorithm and method of multipliers 35



Comparison with dual (sub)gradient method

method of multipliers

o like dual method, but with augmented Lagrangian, specific step size
e converges under far more general conditions than dual subgradient

e f need not be strictly convex, or differentiable

f can take on value +o00

but not amenable to decomposition (more later ... )

Proximal point algorithm and method of multipliers
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