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Relations

• a relation R on a set Rn is a subset of Rn × Rn

• domR = {x | ∃y (x, y) ∈ R}

• overload R(x) to mean the set R(x) = {y | (x, y) ∈ R}

• can think of R as ‘set-valued mapping’, i.e., from domR into 2R
n

• when R(x) is always empty or a singleton, we say R is a function

• any function (or operator) f : C → Rn with C ⊆ Rn is a relation
(f(x) is then ambiguous: it can mean f(x) or {f(x)})
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Examples

• empty relation: ∅

• full relation: Rn × Rn

• identity: I = {(x, x) | x ∈ Rn}

• zero: 0 = {(x, 0) | x ∈ Rn}

• {x ∈ R2 | x2
1 + x2

2 = 1}

• {x ∈ R2 | x1 ≤ x2}

• subdifferential relation: ∂f = {(x, ∂f(x)) | x ∈ Rn}
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Operations on relations

• inverse (relation): R−1 = {(y, x) | (x, y) ∈ R}

– inverse exists for any relation
– coincides with inverse function, when inverse function exists

• composition: RS = {(x, y) | ∃z (x, z) ∈ S, (z, y) ∈ R}

• scalar multiplication: αR = {(x, αy) | (x, y) ∈ R}

• addition: R+ S = {(x, y + z) | (x, y) ∈ R, (x, z) ∈ S}
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Example: Resolvent of operator

for relation R and λ ∈ R, resolvent (much more on this later) is relation

S = (I + λR)−1

• I + λR = {(x, x+ λy) | (x, y) ∈ R}

• S = (I + λR)−1 = {(x+ λy, x) | (x, y) ∈ R}

• for λ 6= 0, S = {(u, v) | (u− v)/λ ∈ R(v)}
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Generalized equations

• goal: solve generalized equation 0 ∈ R(x)

• i.e., find x ∈ Rn with (x, 0) ∈ R

• solution set or zero set is X = {x ∈ domR | 0 ∈ R(x)}

• if R = ∂f and f : Rn → Rn, then 0 ∈ R(x) means x minimizes f
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Monotone operators

• relation F on Rn is monotone if

(u− v)T (x− y) ≥ 0 for all (x, u), (y, v) ∈ F

• F is maximal monotone if there is no monotone operator that properly
contains it

• we’ll be informal (i.e., sloppy) about maximality, other analysis issues

• solving generalized equations with maximal monotone operators
subsumes many useful problems
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Maximal monotone operators on R

F is maximal monotone iff it is a connected curve with no endpoints, with
nonnegative (or infinite) slope
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Some basic properties

suppose F and G are monotone

• sum: F +G is monotone

• nonnegative scaling: if α ≥ 0, then αF is monotone

• inverse: F−1 is monotone

• congruence: for T ∈ Rn×m, TTF (Tz) is monotone (on Rm)

• zero set: {x ∈ Rn | 0 ∈ F (x)} is convex if F is maximal monotone

affine function F (x) = Ax+ b is monotone iff A+AT � 0
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Subdifferential

F (x) = ∂f(x) is monotone

• suppose u ∈ ∂f(x) and v ∈ ∂f(y)

• then

f(y) ≥ f(x) + uT (y − x), f(x) ≥ f(y) + vT (x− y)

• add these and cancel f(y) + f(x) to get

0 ≤ (u− v)T (x− y)

if f is convex closed proper (CCP) then F (x) = ∂f(x) is maximal monotone
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KKT operator

• equality-constrained convex problem (with A ∈ Rm×n)

minimize f(x)
subject to Ax = b

with Lagrangian L(x, y) = f(x) + yT (Ax− b)

• associated KKT operator on Rn × Rm:

F (x, y) =

[

∂xL(x, y)
−∂yL(x, y)

]

=

[

∂f(x) +AT y
b−Ax

]

=

[

rdual

−rpri

]

• zero set of F is set of primal-dual optimal points (saddle points of L)

• KKT operator is monotone: write as sum of monotone operators

F (x, y) =

[

∂f(x)
b

]

+

[

0 AT

−A 0

] [

x
y

]
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Multiplier to residual mapping

• same equality-constrained convex problem

• define F (y) = b−Ax with x ∈ argminz L(z, y) (can be set-valued)

• −F (y) is primal residual obtained from dual variable y

• interpretation: F (y) = ∂(−g)(y), where g is dual function

• zero set is set of dual optimal points

• multiplier to residual mapping F is monotone

• quick proof: F (y) = b−A(∂f)−1(−AT y) (or use F (y) = ∂(−g)(y))
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Nonexpansive and contractive operators

• F has Lipschitz constant L if

‖F (x)− F (y)‖2 ≤ L‖x− y‖2 for all x, y ∈ domF

• for L = 1, we say F is nonexpansive

• for L < 1, we say F is a contraction (with contraction factor L)

Nonexpansive and contractive operators 13



Properties

• if F and G have Lipschitz constant L, so does

θF + (1− θ)G, θ ∈ [0, 1]

• composition of nonexpansive operators is nonexpansive

• composition of nonexpansive operator and contraction is contraction

• fixed point set of nonexpansive F (with dom f = Rn)

{x | F (x) = x}

is convex (but can be empty)

• a contraction has a single fixed point (more later)
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Resolvent and Cayley operator

• for λ ∈ R, resolvent of relation F is

R = (I + λF )−1

• when λ ≥ 0 and F monotone, R is nonexpansive (thus a function)

• when λ ≥ 0 and F maximal monotone, domR = Rn

• Cayley operator of F is

C = 2R− I = 2(I + λF )−1 − I

• when λ ≥ 0 and F monotone, C is nonexpansive

• we write RF and CF to explicitly show dependence on F
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Proof that C is nonexpansive

assume λ > 0 and F monotone

• suppose (x, u) ∈ R and (y, v) ∈ R, i.e.,

u+ λF (u) ∋ x, v + λF (v) ∋ y

• subtract to get u− v + λ(F (u)− F (v)) ∋ x− y

• multiply by (u− v)T and use monotonicity of F to get

‖u− v‖22 ≤ (x− y)T (u− v)

• so when x = y, we must have u = v (i.e., R is a function)
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Proof (continued)

• now let’s show C is nonexpansive:

‖C(x)− C(y)‖22 = ‖(2u− x)− (2v − y)‖22
= ‖2(u− v)− (x− y)‖22
= 4‖u− v‖22 − 4(u− v)T (x− y) + ‖x− y‖22
≤ ‖x− y‖22

using inequality above

• R is nonexpansive since it is the average of I and C:

R = (1/2)I + (1/2)(2R − I)
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Example: Linear operators

• linear mapping F (x) = Ax is

– monotone iff A+AT � 0
– nonexpansive iff ‖A‖2 ≤ 1

• λ ≥ 0 and A+AT � 0 =⇒

– I + λA nonsingular
– ‖RA‖2 = ‖(I + λA)−1‖2 ≤ 1
– ‖CA‖2 = ‖2(I + λA)−1 − I‖2 ≤ 1

• for matrix case, we have alternative formula for Cayley operator:

2(I + λA)−1 − I = (I + λA)−1(I − λA)

cf. bilinear function
1− λa

1 + λa
, which maps

{s ∈ C | ℜs ≥ 0} into {s ∈ C | |s| ≤ 1}
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Resolvent of subdifferential: Proximal mapping

• suppose z = (I + λ∂f)−1(x), with λ > 0, f convex

• this means z + λ∂f(z) ∋ x

• rewrite as
0 ∈ ∂z

(

f(z) + (1/2λ)‖z − x‖22
)

which is the same as

z = argmin
u

(

f(u) + (1/2λ)‖u− x‖22
)

• RHS called proximal mapping of f , denoted proxλf (x)
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Example: Indicator function

• take f = IC , indicator function of convex set C

• ∂f is the normal cone operator

NC(x) =

{

∅ x 6∈ C
{w | wT (z − x) ≤ 0 ∀z ∈ C} x ∈ C

• proximal operator of f (i.e., resolvent of NC) is

(I + λ∂IC)
−1(x) = argmin

u

(

IC(u) + (1/2λ)‖u− x‖22
)

= ΠC(x)

where ΠC is (Euclidean) projection onto C
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Resolvent of multiplier to residual map

• take F to be multiplier to residual mapping for convex problem

minimize f(x)
subject to Ax = b

• F (y) = b−Ax where x ∈ argminw L(w, y)

• z = (I + λF )−1(y) means z + λF (z) ∋ y

• z + λ(b−Ax) = y for some x ∈ argminw L(w, z)

• write as
z = y + λ(Ax− b), ∂f(x) +AT z ∋ 0
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Resolvent of multiplier to residual map

• write second term as ∂f(x) +AT y + λAT (Ax− b) ∋ 0, so

x ∈ argmin
w

(

f(w) + yT (Aw − b) + (λ/2)‖Aw − b‖22
)

• function on right side is augmented Lagrangian for the problem

• so z = R(y) can be found as

x := argmin
w

(

f(w) + yT (Aw − b) + (λ/2)‖Aw − b‖22
)

z := y + λ(Ax− b)
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Fixed points of Cayley and resolvent operators

• assume F is maximal monotone, λ > 0

• solutions of 0 ∈ F (x) are fixed points of R:

F (x) ∋ 0 ⇐⇒ x+ λF (x) ∋ x ⇐⇒ x = (I + λF )−1(x) = R(x)

• solutions of 0 ∈ F (x) are fixed points of C:

x = R(x) ⇐⇒ x = 2R(x)− x = C(x)

• key result: we can solve 0 ∈ F (x) by finding fixed points of C or R

• next: how to actually find these fixed points

Resolvent and Cayley operator 23
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Contraction mapping theorem

• also known as Banach fixed point theorem

• assume F is contraction, with Lipschitz constant L < 1, domF = Rn

• the iteration
xk+1 := F (xk)

converges to the unique fixed point of F

• proof (sketch):

– sequence xk is Cauchy: ‖xk+m − xk‖2 ≤ ‖xk+1 − xk‖2/(1− L)
– hence converges to a point x⋆

– x⋆ must be (the) fixed point
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Example: Gradient method

• assume f is convex, mI � ∇2f(x) � LI
(i.e., f strongly convex, ∇f Lipschitz)

• gradient method is

xk+1 := xk − α∇f(xk) = F (xk)

(fixed points are exactly solutions of F (x) = x)

• DF (x) = I − α∇2f(x)

• F is a Lipschitz with parameter max{|1− αm|, |1− αL|}

• F is a contraction when 0 < α < 2/L

• so gradient method converges (geometrically) when 0 < α < 2/L
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Damped iteration of a nonexpansive operator

• suppose F is nonexpansive, domF = Rn, with fixed point set
X = {x | F (x) = x}

• can have X = ∅ (e.g., translation)

• simple iteration of F need not converge, even when X 6= ∅
(e.g., rotation)

• damped iteration:

xk+1 := (1− θk)xk + θkF (xk)

θk ∈ (0, 1)

• important special case: θk = 1/2 (more later)

• another special case: θk = 1/(k + 1), which gives simple averaging

xk =
1

k + 1

(

x0 + · · ·+ F (xk−2) + F (xk−1)
)
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Convergence results

• assume F is nonexpansive, domF = Rn, X 6= ∅, and

∞
∑

k=0

θk(1− θk) = ∞

(which holds for special cases above)

• then we have
min

j=0,...,k
dist(xj , X) → 0

i.e., (some) iterates get arbitrarily close to fixed point set, and

min
j=0,...,k

‖F (xj)− xj‖2 → 0

i.e., (some) iterates yield arbitrarily good ‘almost fixed points’
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Idea of proof

x⋆

xk

F (xk)
xk+1

• F (xk) is no farther from x⋆ than xk is (by nonexpansivity)

• so xk+1 is closer to x⋆ than xk is
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Proof

• start with identity

‖θa+ (1− θ)b‖22 = θ‖a‖22 + (1− θ)‖b‖22 − θ(1− θ)‖b− a‖22

• apply to xk+1 − x⋆ = (1− θk)(xk − x⋆) + θk(F (xk)− x⋆):

‖xk+1 − x⋆‖22
= (1− θk)‖xk − x⋆‖22 + θk‖F (xk)− x⋆‖22 − θk(1− θk)‖F (xk)− xk‖22
≤ ‖xk − x⋆‖22 − θk(1− θk)‖F (xk)− xk‖22

using ‖F (xk)− x⋆‖2 ≤ ‖xk − x⋆‖2
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Proof (continued)

• iterate inequality to get

k
∑

j=0

θj(1− θj)‖F (xj)− xj‖22 ≤ ‖x0 − x⋆‖22 − ‖xk+1 − x⋆‖22

• if ‖F (xj)− xj‖2 ≥ ǫ for j = 0, . . . , k, then

ǫ2 ≤
‖x0 − x⋆‖22

∑k
j=0 θ

j(1− θj)

• RHS goes to zero as k → ∞

Fixed point iterations 30



Outline

1 Relations

2 Monotone operators

3 Nonexpansive and contractive operators

4 Resolvent and Cayley operator

5 Fixed point iterations

6 Proximal point algorithm and method of multipliers

Proximal point algorithm and method of multipliers 31



Damped Cayley iteration

• want to solve 0 ∈ F (x) with F maximal monotone

• damped Cayley iteration:

xk+1 := (1− θk)xk + θkC(xk)

= (1− θk)xk + θk(2R(xk)− I(xk))

= (1− 2θk)xk + 2θkR(xk)

with θk ∈ (0, 1) and
∑

k θ
k(1− θk) = ∞

• converges (assuming X 6= ∅) in sense given above

• important: requires ability to evaluate resolvent map of F
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Proximal point algorithm

• take θk = 1/2 in damped Cayley iteration

• gives resolvent iteration or proximal point algorithm:

xk+1 := R(xk) = (I + λF )−1(xk)

• if F = ∂f with f convex, yields proximal minimization algorithm

xk+1 := proxf,1/λ(x
k) = argmin

x

(

f(x) + (1/2λ)‖x− xk‖22
)

can interpret as quadratic regularization that goes away in limit

• many classical algorithms are just proximal point method applied to
appropriate maximal monotone operator
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Method of multipliers

• take F to be multiplier to residual mapping for

minimize f(x)
subject to Ax = b

• F (y) = b−Ax with x ∈ argminz L(z, y)

• proximal point algorithm becomes method of multipliers:

xk+1 := argmin
w

(

f(w) + (yk)T (Aw − b) + (λ/2)‖Aw − b‖22
)

yk+1 := yk + λ(Axk+1 − b)
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Method of multipliers

• first step is augmented Lagrangian minimization

• second step is dual variable update

• yk converges to an optimal dual variable

• primal residual Axk − b converges to zero
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Method of multipliers dual update

• optimality conditions (primal and dual feasibility):

Ax− b = 0, ∂f(x) +AT y ∋ 0

• from definition of xk+1 we have

0 ∈ ∂f(xk+1) +AT yk + λAT (Axk+1 − b)

= ∂f(xk+1) +AT yk+1

• so dual update makes (xk+1, yk+1) dual feasible

• primal feasibility occurs in limit as k → ∞
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Comparison with dual (sub)gradient method

method of multipliers

• like dual method, but with augmented Lagrangian, specific step size

• converges under far more general conditions than dual subgradient

• f need not be strictly convex, or differentiable

• f can take on value +∞

• but not amenable to decomposition (more later . . . )
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