Monotone Operator Splitting Methods

Stephen Boyd (with help from Neal Parikh and Eric Chu)

EE364b, Stanford University

Outline

- 1 Operator splitting
- 2 Douglas-Rachford splitting
- 3 Consensus optimization

Operator splitting

Operator splitting

- want to solve $0 \in F(x)$ with F maximal monotone
- main idea: write F as F = A + B, with A and B maximal monotone
- called operator splitting
- · solve using methods that require evaluation of resolvents

$$R_A = (I + \lambda A)^{-1}, \qquad R_B = (I + \lambda B)^{-1}$$

(or Cayley operators $C_A = 2R_A - I$ and $C_B = 2R_B - I$)

ullet useful when R_A and R_B can be evaluated more easily than R_F

Main result

- A, B maximal monotone, so Cayley operators C_A , C_B nonexpansive
- hence $C_A C_B$ nonexpansive
- key result:

$$0 \in A(x) + B(x) \iff C_A C_B(z) = z, \quad x = R_B(z)$$

• so solutions of $0 \in A(x) + B(x)$ can be found from fixed points of nonexpansive operator $C_A C_B$

Proof of main result

• write $C_A C_B(z) = z$ and $x = R_B(z)$ as

$$x = R_B(z), \quad \tilde{z} = 2x - z, \quad \tilde{x} = R_A(\tilde{z}), \quad z = 2\tilde{x} - \tilde{z}$$

- subtract 2nd & 4th equations to conclude $x = \tilde{x}$
- 4th equation is then $2x = \tilde{z} + z$
- now add $x + \lambda B(x) \ni z$ and $x + \lambda A(x) \ni \tilde{z}$ to get

$$2x + \lambda(A(x) + B(x)) \ni \tilde{z} + z = 2x$$

- hence $A(x) + B(x) \ni 0$
- argument goes other way (but we don't need it)

Outline

- ① Operator splitting
- 2 Douglas-Rachford splitting
- 3 Consensus optimization

Peaceman-Rachford and Douglas-Rachford splitting

• Peaceman-Rachford splitting is undamped iteration

$$z^{k+1} = C_A C_B(z^k)$$

doesn't converge in general case; need C_A or C_B to be contraction

• Douglas-Rachford splitting is damped iteration

$$z^{k+1} := (1/2)(I + C_A C_B)(z^k)$$

always converges when $0 \in A(x) + B(x)$ has solution

these methods trace back to the mid-1950s (!!)

Douglas-Rachford splitting

write D-R iteration
$$z^{k+1}:=(1/2)(I+C_AC_B)(z^k)$$
 as
$$x^{k+1/2} := R_B(z^k)$$

$$z^{k+1/2} := 2x^{k+1/2} - z^k$$

$$x^{k+1} := R_A(z^{k+1/2})$$

$$z^{k+1} := z^k + x^{k+1} - x^{k+1/2}$$

last update follows from

$$\begin{array}{lll} z^{k+1} & := & (1/2)(2x^{k+1}-z^{k+1/2}) + (1/2)z^k \\ & = & x^{k+1} - (1/2)(2x^{k+1/2}-z^k) + (1/2)z^k \\ & = & z^k + x^{k+1} - x^{k+1/2} \end{array}$$

- can consider $x^{k+1} x^{k+1/2}$ as a residual
- z^k is running sum of residuals

Douglas-Rachford algorithm

- many ways to rewrite/rearrange D-R algorithm
- equivalent to many other algorithms; often not obvious
- need very little: A, B maximal monotone; solution exists
- A and B are handled separately (via R_A and R_B); they are 'uncoupled'

Alternating direction method of multipliers

to minimize
$$f(x) + g(x)$$
, we solve $0 \in \partial f(x) + \partial g(x)$

with
$$A(x) = \partial g(x)$$
, $B(x) = \partial f(x)$, D-R is
$$x^{k+1/2} := \underset{x}{\operatorname{argmin}} \left(f(x) + (1/2\lambda) \|x - z^k\|_2^2 \right)$$

$$z^{k+1/2} := 2x^{k+1/2} - z^k$$

$$x^{k+1} := \underset{x}{\operatorname{argmin}} \left(g(x) + (1/2\lambda) \|x - z^{k+1/2}\|_2^2 \right)$$

$$z^{k+1} := z^k + x^{k+1} - x^{k+1/2}$$

a special case of the alternating direction method of multipliers (ADMM)

Constrained optimization

constrained convex problem:

minimize
$$f(x)$$
 subject to $x \in C$

- take $B(x) = \partial f(x)$ and $A(x) = \partial I_C(x) = N_C(x)$
- so $R_B(z) = \mathbf{prox}_f(z)$ and $R_A(z) = \Pi_C(z)$
- D-R is

$$\begin{array}{rcl} x^{k+1/2} & := & \mathbf{prox}_f(z^k) \\ z^{k+1/2} & := & 2x^{k+1/2} - z^k \\ x^{k+1} & := & \Pi_C(z^{k+1/2}) \\ z^{k+1} & := & z^k + x^{k+1} - x^{k+1/2} \end{array}$$

Dykstra's alternating projections

- find a point in the intersection of convex sets C, D
- D-R gives algorithm

$$\begin{array}{rcl} x^{k+1/2} & := & \Pi_C(z^k) \\ z^{k+1/2} & := & 2x^{k+1/2} - z^k \\ x^{k+1} & := & \Pi_D(z^{k+1/2}) \\ z^{k+1} & := & z^k + x^{k+1} - x^{k+1/2} \end{array}$$

- this is Dykstra's alternating projections algorithm
- much faster than classical alternating projections (e.g., for C, D polyhedral, converges in finite number of steps)

Positive semidefinite matrix completion

- some entries of matrix in Sⁿ known; find values for others so completed matrix is PSD
- $C = \mathbf{S}_{+}^{n}$, $D = \{X \mid X_{ij} = X_{ij}^{\text{known}}, (i, j) \in \mathcal{K}\}$
- projection onto C: find eigendecomposition $X = \sum_{i=1}^{n} \lambda_i q_i q_i^T$; then

$$\Pi_C(X) = \sum_{i=1}^n \max\{0, \lambda_i\} q_i q_i^T$$

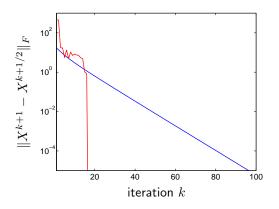
ullet projection onto D: set specified entries to known values

Positive semidefinite matrix completion

specific example: 50×50 matrix missing about half of its entries

• initialize $Z^0 = 0$

Positive semidefinite matrix completion



- blue: alternating projections; red: D-R
- $\bullet \ X^{k+1/2} \in C \text{, } X^{k+1} \in D$

Outline

- ① Operator splitting
- 2 Douglas-Rachford splitting
- 3 Consensus optimization

Consensus optimization

- want to minimize $\sum_{i=1}^{N} f_i(x)$
- rewrite as consensus problem

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $x \in C = \{(x_1, \dots, x_N) \mid x_1 = \dots = x_N\}$

• D-R consensus optimization:

$$\begin{array}{rcl} x^{k+1/2} & := & \mathbf{prox}_f(z^k) \\ z^{k+1/2} & := & 2x^{k+1/2} - z^k \\ x^{k+1} & := & \Pi_C(z^{k+1/2}) \\ z^{k+1} & := & z^k + x^{k+1} - x^{k+1/2} \end{array}$$

Douglas-Rachford consensus

• $x^{k+1/2}$ -update splits into N separate (parallel) problems:

$$x_i^{k+1/2} := \underset{z_i}{\operatorname{argmin}} \left(f_i(z_i) + (1/2\lambda) \| z_i - z_i^k \|_2^2 \right), \quad i = 1, \dots, N$$

• x^{k+1} -update is averaging:

$$x_i^{k+1} := \overline{z}^{k+1/2} = (1/N) \sum_{i=1}^N z_i^{k+1/2}, \quad i = 1, \dots, N$$

• z^{k+1} -update becomes

$$\begin{array}{lll} z_i^{k+1} & = & z_i^k + \overline{z}^{k+1/2} - x_i^{k+1/2} \\ & = & z_i^k + 2\overline{x}^{k+1/2} - \overline{z}^k - x_i^{k+1/2} \\ & = & z_i^k + (\overline{x}^{k+1/2} - x_i^{k+1/2}) + (\overline{x}^{k+1/2} - \overline{z}^k) \end{array}$$

• taking average of last equation, we get $\overline{z}^{k+1} = \overline{x}^{k+1/2}$

Douglas-Rachford consensus

• renaming $x^{k+1/2}$ as x^{k+1} , D-R consensus becomes

$$\begin{array}{lll} x_i^{k+1} & := & \mathbf{prox}_{f_i}(z_i^k) \\ z_i^{k+1} & := & z_i^k + (\overline{x}^{k+1} - x_i^{k+1}) + (\overline{x}^{k+1} - \overline{x}^k) \end{array}$$

- subsystem (local) state: \overline{x} , z_i , x_i
- ullet gather x_i 's to compute \overline{x} , which is then scattered

Distributed QP

• we use D-R consensus to solve QP

$$\begin{array}{ll} \text{minimize} & f(x) = \sum_{i=1}^N (1/2) \|A_i x - b_i\|_2^2 \\ \text{subject to} & F_i x \leq g_i, \quad i = 1, \dots, N \end{array}$$

with variable $x \in \mathbf{R}^n$

- $\bullet\,$ each of N processors will handle an objective term, block of constraints
- $\bullet \ \ {\rm coordinate} \ N \ {\rm QP} \ \ {\rm solvers} \ \ {\rm to} \ \ {\rm solve} \ \ {\rm big} \ \ {\rm QP}$

Distributed QP

• D-R consensus algorithm is

$$x_i^{k+1} := \underset{F_i x_i \leq g_i}{\operatorname{argmin}} \left((1/2) \| A_i x_i - b_i \|_2^2 + (1/2\lambda) \| x_i - z_i^k \|_2^2 \right)$$

$$z_i^{k+1} := z_i^k + (\overline{x}^{k+1} - x_i^{k+1}) + (\overline{x}^{k+1} - \overline{x}^k),$$

- ullet first step is N parallel QP solves
- second step gives coordination, to solve large problem
- \bullet inequality constraint residual is $\mathbf{1}^T(F\overline{x}^k-g)_+$

Distributed QP

example with n=100 variables, N=10 subsystems

