
CS 228T: A BIRD’S EYE VIEW

NEAL PARIKH

Abstract. This is a (rough draft of a) very high-level overview of some of the key ideas in graphical
models, with a focus on topics covered in CS 228T. Many comments are left at an intuitive or casual
level, technical conditions are omitted, and notation from the book is used without explanation.
The bibliography contains many historical references and suggestions for further reading.

Discussions of graphical models are often divided into three major parts: representation (what
they are), inference (what we do with them), and learning (how to pick which one to use). A
fundamental characteristic of the subject is that these three facets are inextricably linked: efficient
inference and learning algorithms rely on exploiting the model representation, representations are
often chosen to ease inference and learning, and inference and learning themselves are intertwined.
It is often worth keeping in mind the interactions among these three aspects when thinking about
graphical models, rather than thinking about any one in isolation.

1. Representation

1. Modeling complex real world situations requires accounting for uncertainty, and probabilistic
models are the natural way to do so.1 This involves dealing with joint probability distributions
over very large numbers of variables. These are not easy to work with either computationally
(e.g., computing singleton marginals requires huge multidimensional integrals) or statistically
(estimating the exponential number of parameters in a full joint distribution would require
massive amounts of data).

2. Graphical models provide a way around this by focusing on joint distributions that can be
represented by graphs, ideally with a small number of edges. (Roughly speaking, the whole point
is to erase most of the edges from the complete graph, which can represent any joint distribution
over its nodes.) These allow for designing models over very large numbers of variables while
managing computational cost and reducing the number of free parameters to be estimated.

3. The core idea is to assume that the global structure of the probability distribution is determined
by composing local structures, each of which is much simpler to handle. Many of the benefits of
graphical models come from the fact that the probabilistic structure and the graphical structure
interact; for example, independence statements in probability can be translated into separation
or reachability statements in graph theory.

4. There are two main classes of graphical models: directed models (Bayesian networks) and undi-
rected models (Markov random fields). Factor graphs are also a convenient representation that
can represent either directed or undirected models. Computationally, the major difference be-
tween directed and undirected models is that undirected models have a normalization constant
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called the partition function.2 This makes many tasks in undirected models harder, since the
partition function3 couples the local potentials and is often difficult to evaluate.

5. Gaussians. An important class of continuous graphical models is the class of Gaussian graphical
models. It can be shown that multivariate Gaussians can be represented as Bayesian networks or
as Markov random fields. There are several parametrizations of Gaussian distributions, including
the usual form and the information form (in terms of the inverse covariance matrix Σ−1), and the
information form is often easier to work with in the context of graphical models. For example,
the sparsity pattern of Σ−1 encodes the pairwise Markov properties for an MRF.

6. Exponential models. The most important class of graphical models consists of those that are
members of the exponential family. In the undirected case, we usually work with the log-linear
parametrization of MRFs directly (see below), which ensures they are exponential family models.
In the directed case, these take the form of conjugate-exponential models. A prior distribution is
conjugate to a likelihood function if the posterior is in the same family as the prior. All distri-
butions in the exponential family have conjugate priors, so these models often involve picking an
appropriate exponential family distribution for the data being modeled, then placing conjugate
priors over the model parameters. For example, the Dirichlet is conjugate to the multinomial, so
Dirichlet priors often appear in Bayesian models of discrete data. Conjugate-exponential models
have many convenient properties. For example, the posterior can be computed by updating
the prior parameters using sufficient statistics of the data, rather than by carrying out integrals
explicitly. This can make inference in these models much simpler.

7. Parametrization.4 In the general theory, we associate potential functions with the maximal
cliques of the graph. By ranging over all possible potentials on the maximal cliques of a graph,
we obtain all of the probability distributions that respect the Markov properties of the graph. In
practical applications, large, fully-parametrized cliques are problematic both for computational
reasons (inference is exponential in the clique sizes) and for statistical reasons (the estimation
of large numbers of parameters requires large amounts of data). We usually prefer to work
with reduced parametrizations that range over proper subsets of the set of all possible potential
functions on maximal cliques. There are many ways to do this, e.g., by building a potential
function on a maximal clique from potentials on non-maximal cliques or by using features.

(a) Features. Features let us assign parameters only to particular configurations of variables of
interest (particular ‘cells’ in table factors), so the parametrization is significantly reduced.
More generally, it is natural to consider ‘features’ as arbitrary functions on subsets of nodes.
In the limiting case, if we use one binary feature for each cell in the table, we obtain a full
parametrization of the potential function in which all cells in the table have an independently
adjustable parameter.

(b) Exponential families. There is a close relationship between exponential family models and
graphical models. If we use an exponential representation for the contribution of each
individual feature, then the product of potential functions leads to an exponential family
representation for the joint distribution associated with the graphical model. (The features
are the sufficient statistics.) Alternatively, we can also represent an arbitrary exponential
family model as a graphical model by connecting nodes that appear together as arguments to
the features. If we formulate the maximum entropy problem as finding the distribution with
maximum entropy satisfying constraints on the expected values of a set of feature functions,

2Much of the terminology, particularly in the undirected case, comes from statistical physics and traces back to
Gibbs [Gib76] and others.

3The partition function is denoted Z because of the German word zustandssumme, which means ‘sum over states’.
4These comments are based on some unpublished notes by Michael Jordan.
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this can be shown to be dual to maximum likelihood estimation in the exponential family
with these features as sufficient statistics.

2. Inference

8. Given a graphical model (with fixed parameters), the term inference refers to computing mar-
ginal and conditional probabilities of interest from the full joint distribution. This involves
summing or integrating over a number of variables, e.g.,

p(X1) =
∑
x2

∑
x3

· · ·
∑
xn

p(X1, x2, . . . , xn).

The term MAP inference refers to computing modes over the whole graph or subsets of nodes.

9. Exact inference. Inference can be carried out exactly in any graphical model using the clique tree
algorithm, also called the junction tree algorithm. This algorithm uses a special data structure
called a clique tree to compute marginals over all cliques simultaneously; essentially, it is based
on the idea of ‘pushing sums in’ as far as they will go, depending on the factorization of the full
joint distribution. The time complexity of this algorithm is exponential in the tree-width of the
graph, however, so this is only tractable for graphs with low tree-width (e.g., trees have tree-
width 1). This is another example where a probabilistic operation (marginalizing out variables)
can be characterized using graph-theoretic properties of the model.

(a) Clique tree reparametrization. A particularly important property of the clique tree algo-
rithm is that it amounts to finding a reparametrization of the original joint distribution.
In particular, the parametrization is in terms of marginals of cliques and sepsets. This is
in contrast to the original factorization of the joint distribution, which may be in terms of
conditional distributions (e.g., in a Bayesian network). This parametrization plays a funda-
mental role in characterizing exact inference as an optimization problem and in variational
inference and learning.

10. Approximate inference. When exact inference is intractable, we turn to approximate inference al-
gorithms. There are two main categories: sampling methods and variational methods. Sampling
algorithms rely on the use of Markov chain Monte Carlo methods for sampling from distributions
that are difficult to sample from. Variational methods are based on optimization. Monte Carlo
estimates are guaranteed to converge to the true value given enough samples from a fully mixed
chain, but it can be difficult to diagnose mixing of Markov chains, and in very complex models
even sampling methods can be slow. Variational methods are fast but produce approximate
solutions, and it is difficult to quantify the quality of the approximations; on the other hand,
some approximations are guaranteed to be an upper or lower bound on the quantity of interest.

11. Markov chain Monte Carlo. MCMC methods are based on constructing a Markov chain whose
stationary distribution is the distribution we wish to sample from, and sampling from this chain.
(Note that this means that the samples are not independent.) The most important MCMC
algorithm is Metropolis-Hastings; many others are special cases. There are several important
ideas that recur in the design of more advanced MCMC methods, such as collapsing, auxiliary
variables, and temperatures. For further reading on MCMC methods, see [Nea93, Dia09, Dia11,
LPW09, DSC98, BGJM10, KCGN98] and [Mac03, §29–§32].

(a) Metropolis-Hastings. Simpler methods like importance sampling and rejection sampling
rely on designing a proposal or sampling distribution s(x) that is appropriately similar
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to π(x), the target distribution, yet easy to sample from. It can be difficult to find such
distributions. Metropolis-Hastings instead uses a proposal q(x → x′) that depends on
the current state x, and it is not necessary for q to resemble π. The algorithm provides
a constructive way to build a reversible chain that leaves π stationary; this is enforced
by the Metropolis acceptance probability. The major tradeoff in designing proposals is
achieving high acceptance rates while still making sufficiently large moves in the space.
Many advanced methods are just different attempts to accomplish this in certain situations.

(b) Gibbs sampling. Gibbs sampling5 is the MCMC equivalent of coordinate descent; it is a sim-
ple special case of Metropolis-Hastings that involves iteratively sampling from each variable
conditioned on all other variables. In graphical models, each node often has a relatively
small number of immediate dependencies, so this method can be easy to implement. It
always accepts, but often mixes exceedingly slowly. The basic method can be improved
by collapsing or blocking, in which groups of variables are iteratively resampled. Gibbs
sampling illustrates the following general principle: Given multiple transition kernels that
leave π stationary, it is possible to combine them in Metropolis-Hastings.

(c) Collapsing. In collapsing or Rao-Blackwellization, exact inference is carried out on some
subset of the variable of interest, thus reducing the dimensionality of the space that the
sampler needs to explore. In some cases, such as in conjugate-exponential models, this can
simply involve (analytically) summing or integrating out some of the variables in the model;
otherwise, it may involve running an exact inference algorithm. Collapsed Gibbs sampling
is very widely used; e.g., it is one standard way to perform inference in topic models and
other conjugate-exponential Bayesian models.

(d) Auxiliary variables. Auxiliary variable methods pursue essentially the opposite idea as
collapsed samplers: here, extra variables are introduced in order to make sampling easier,
and in particular, to make it easier to take large steps in the state space. Two important
auxiliary variable methods are Swendsen-Wang (for the Ising model) and slice sampling (for
sampling from continuous distributions).

(e) Temperatures. Another important idea is that of temperature; this is used in methods like
annealed importance sampling, a gold standard method in many situations. The basic idea
is to interpolate between two extremes: a target distribution that is hard to sample from
and an inaccurate distribution that is easy to sample from. This is sometimes called parallel
tempering or replica exchange.6

12. Variational inference. Variational methods are based on finding a way to pose a given task
as solving a particular optimization problem. Approximate solutions to the task can then be
obtained by relaxing this optimization problem by simplifying the objective or the constraints.7

(a) Exact inference as optimization. Inference can be posed as the convex optimization problem

minimize D(q ‖ p)
subject to q ∈M(G),

5Gibbs sampling is also known as Glauber dynamics or the heat-bath algorithm in physics.
6At a high level, the idea of interpolating between easy and hard problems appears in many places, such as in

homotopy methods for optimization.
7The historical roots of variational methods lie in the calculus of variations, which accounts for the name. The

particular class of variational methods used in graphical models come from statistical physics, and the ideas trace
back to Feynman [Fey72] and others. The link to statistical physics was shown in [YFW01, YFW03].
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where M(G) is the marginal polytope, a set containing all collections of marginal distributions
over subsets of variables that can arise from a single valid joint distribution.

(i) Geometrically, the problem can be viewed as performing a particular nonlinear pro-
jection (called an I-projection) of p onto the marginal polytope. A major reason we
minimize D(q ‖ p) rather than D(p ‖ q) (which would be M-projection) is because the
former does not require carrying out inference in p.

(ii) Equivalently, the problem can be rewritten as maximizing an energy functional F [p̃, q] =
Eq[log p̃] +H(q) over the marginal polytope, where p = p̃/Z.

(iii) The constraints required to characterize the marginal polytope cannot be efficiently
enumerated for graphs other than trees [DL09, KP82], so it is necessary to consider
approximations to this problem, despite the fact that it is convex.

(iv) The classic belief propagation algorithm can be derived from a variational perspective
as a particular fixed point method for solving this optimization problem (via the
Lagrangian) when G is a tree.

(b) Bethe approximation. The Bethe approximation is a tree-based approximation to the exact
inference problem, in the sense that the approximation is exact for trees.

(i) The entropy term H(q) in the objective is replaced with a factored term HBethe(q),
yielding the factored energy functional, and the marginal polytope is replaced with
the local consistency polytope L(G), a superset of the marginal polytope produced by
only enumerating the local consistency constraints. When G is a tree, M(G) = L(G)
and HBethe(q) = H(q), so the exact problem for trees involves maximizing the factored
energy over the local polytope, which is tractable.

(ii) This problem is nonconvex because the objective is nonconcave in general. In partic-
ular, this means that any method used to solve it must settle for local optima.

(iii) Loopy belief propagation can be viewed as a fixed point method for finding local
optima. Loopy BP can have trouble converging (even to local optima), but the Bethe
approximation can also be solved using other algorithms, like the convex-concave
procedure. However, loopy BP can also be very effective in certain classes of models,
such as in the models used in modern coding theory.

(iv) It is possible to tighten this approximation in a number of ways. One way is to use
approximations to the entropy term and the marginal polytope that are exact for
graphs with tree-width higher than 1. A related idea is to enumerate ‘higher-order’
constraints that hold for any member of the marginal polytope but that can still be
enumerated efficiently; the cycle inequalities are an example. However, these methods
are not widely used in practice. See [WJ08, §4.2] and [DL09] for more details.

(c) Mean field. The mean field method approximates only the constraint set, and considers the
subset of the marginal polytope consisting of fully factored distributions.

(i) More generally, we can consider subsets of the marginal polytope corresponding to
simple graphical models in which exact inference is tractable. This is sometimes
called structured mean field. Very roughly, the idea is that in some graphical models,
there are still ‘too many edges’ to carry out exact inference efficiently, so we erase
the complicating edges until the problem becomes simple enough; standard or ‘naive’
mean field erases all the edges.
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(ii) Having said this, note that mean field is not equivalent to simply using a model
without these extra edges in the first place. First, the true distribution p and the
approximating distribution q interact when carrying out mean field inference, and only
q is missing the complicating edges. Also, this only refers to carrying out inference,
while we have still (somehow) fit the model parameters with the complicating edges.

(iii) Solution quality and nonconvexity. Mean field methods are fast and scale well, but it
is difficult to make precise statements about the quality of the approximate solutions
obtained (compared to MCMC methods), and only local optima can be obtained due
to the nonconvexity of the problem.

(iv) Lower bound property. Perhaps the most important property of mean field approxi-
mations is that they provide a lower bound to the log partition function. This makes
mean field the only natural choice in certain cases when an approximate inference
algorithm is required as a subroutine in a larger procedure (e.g., variational EM).

(d) Other approximations. There are other classes of variational methods based on other approx-
imations to the exact inference problem. The two main classes of approximations considered
here are nonconvex, but there are also convex approximations. For further information, see,
for example, [WJ08, §4.3, §7, §9].

13. MAP inference. There are several major categories of MAP inference algorithms: the max-
product or Viterbi algorithm; move-making algorithms; and methods based on duality.

(a) Max-product. The max-product belief propagation algorithm is the exact analogue of the
standard sum-product algorithm, except that the summations are replaced with maximiza-
tions. As in standard inference, it is only used for models with low tree-width. There is
also a loopy version for general cluster graphs.

(b) Move-making. The idea behind move-making is to only consider certain classes of ‘moves’
from the current labeling (much like in sampling methods), and then ensure that the al-
gorithm is guaranteed to find local optima with respect to this restricted class of moves.
Roughly, these methods are fast and work regardless of the tree-width of the graph, but
require the MRF to be metric.

(i) Binary variables. MAP inference can be performed exactly in pairwise binary MRFs
with submodular potentials, regardless of the structural complexity (e.g., tree-width)
of the underlying graph. The method is based on a constructing an auxiliary graph
such that finding a minimal cut in this auxiliary graph corresponds to the MAP
assignment in the original model.

(ii) Nonbinary variables. In this case, computing the exact MAP assignment is NP-Hard.
The α-expansion and (α, β)-swap methods are based on taking greedy hill-climbing
steps, where each step involves a globally optimal solution to a simplified problem.8

When the original graph is a metric MRF, then the α-expansion and (α, β)-swap
steps can be carried out optimally by running a min-cut algorithm on an appropriately
constructed MRF. The α-expansion algorithm, for instance, allows each node to retain
its label or switch to a fixed label α at each iteration. It is possible to show that
the local optimum obtained by α-expansion is within a known factor of the global
optimum; however, these bounds may be too loose in practice to be of much use.

8At a high level, this idea reappears in many places, including Newton’s method, the EM algorithm, and the
convex-concave procedure.
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(c) Dual decomposition. Dual decomposition for MAP inference is an algorithm based on com-
bining several ideas, each one of which is individually simple. At a high level, it involves
solving the (convex) dual of the integer LP formulation of the MAP inference problem, which
is guaranteed to provide a lower bound on the primal optimal value. We solve the dual by
solving (combinatorial) MAP inference problems over tractable subsets of the original graph
and then coordinating these to agree where they overlap.

(i) Integer LP formulation. In a discrete graphical model, the MAP inference task is
evidently a combinatorial optimization problem, since it involves searching over the
discrete (joint) label space. This problem can be expressed as an integer linear pro-
gram, which is an LP where the variables are constrained to be in a discrete set (thus
rendering the problem nonconvex).

(ii) Tractable substructures. First, we identify substructures of the model in which exact
inference is tractable. This could include trees (e.g., rows and columns of a grid), other
graphs with low tree-width, or submodular components amenable to graph cuts.

(iii) Consensus transformation. We duplicate variables that are shared across multiple
subproblems and then constrain them to agree. This evidently yields a problem that
is equivalent to the original problem, but the effect of this is that in the dual problem,
the subproblems will completely decouple and can be solved independently.

(iv) Dual problem. Recall that the dual of an optimization problem is convex, regardless
of the convexity of the original problem, and the dual optimal value is a lower bound
on the primal optimal value. Taking the dual of the consensus version of the MAP
problem yields a convex problem that is separable across the tractable substructures.
Note that we only relax the consistency constraints when forming the dual, so the
integer constraints in the primal are preserved in the slave problems in the dual.

(v) Dual subgradient method. The dual function is concave but usually nondifferentiable,
so it is necessary to use a subgradient method or equivalent to maximize it. The
resulting algorithm can be viewed as a (continuous) master problem coordinating the
behavior of a set of (combinatorial but tractable) slaves. Each master update will
‘reprice’ the cost of disagreement across slaves that do not agree where they overlap.

3. Learning

14. The term learning refers to the task of selecting which graphical model among a particular set of
options is the best fit to a particular dataset. This could involve selecting a particular member
of a parametric family of models (i.e., parameter learning), or more generally, choosing from
a set of different families (i.e., structure learning or model selection). In structure learning,
we want to learn the graph structure of the model or determine the type or dimensionality of
latent variables (often in addition to learning the parameters). Roughly, model selection refers
to determining something that changes the number or characteristics of the parameters in the
model (e.g., if there are more components in a mixture model, the model has more parameters).
A major theme in graphical models is the deep link between inference and learning; the Bayesian
approach goes so far as to unify the two.

15. The learning problem can be further classified in a number of ways: whether the model is directed
or undirected, whether the model is generative or discriminative, whether the data is complete or
incomplete, and how the learning task is defined (e.g., maximum likelihood estimation, Bayesian
learning, and so on). When selecting a training approach, it is important to think about several
criteria, such as computation (e.g., tractability, scalability, need for approximations); statistical
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properties (e.g., asymptotic consistency, overfitting, bias-variance tradeoff); and applicability
(what task the model will ultimately be used for). We select a particular linear ordering of some
of these topics, but really these methods should be organized across multiple axes, so do not
read too much into the ordering in this section.

16. Maximum likelihood estimation. In maximum likelihood estimation, we define a parametric
model p(x | θ), parametrized by θ, and then maximize the (log) likelihood function

`(θ) =

m∑
i=1

log p(xi | θ)

with variable θ, where {xi}mi=1 is the dataset. Maximum likelihood estimation can be viewed as
computing the M-projection of the empirical distribution onto the model family.

(a) Duality. Maximum likelihood is a convex dual of the maximum entropy problem. (This
was touched on earlier, in the discussion of features and exponential families.)

(b) Regularization. Standard maximum likelihood estimation will overfit the training data
(unless a huge amount of data is available relative to the number of parameters being
estimated). For example, the model will assign probability zero to any outcomes that
happened not to appear in the training set. In practice, one would include some form of
regularization on the parameters, or equivalently, place a prior on the parameters and carry
out MAP estimation. Note that the term ‘maximum likelihood’ is often used even when
regularization is involved.

17. Directed models. The fundamental characteristic of directed models is that the individual factors
are normalized conditional distributions, and thus that the global factorization is fully normalized
(at least when no evidence is present). The effect of this property is that many tasks decompose
so each local distribution can be handled separately.

(a) Fully observed models. In this case, the log likelihood decomposes as a sum of independent
terms, one for each CPD in the network (assuming parameters are not shared across CPDs).
This means each CPD’s parameters can be estimated independently; in the discrete case, the
estimate for each CPD parameter has a simple closed form solution (θ̂x|u = M [u, x]/M [x]).
Similar results hold for exponential family CPDs. (As usual, unregularized maximum like-
lihood will overfit, so usually one places a prior on the parameters.)

(b) Latent variable models. The EM algorithm is the core method for performing maximum
likelihood estimation in (usually directed) models with hidden variables. Introducing hid-
den variables makes the learning problem nonconvex, so we have to settle for local optima.
The E-step involves computing the posterior of the hidden variables, and the M-step in-
volves carrying out more or less standard maximum likelihood estimation using this ‘soft
completion’ of the hidden variables in all the training instances. In this sense, it consists of
alternating inference and learning. A useful property of EM is that we fit the parameters
and obtain the posterior over the latent variables simultaneously.

(i) Free energy. EM can be viewed from a variational perspective as maximizing (via
coordinate ascent) a particular energy functional F [θ, q] = Eq[log p̃] + H(q). In par-
ticular, the E-step maximizes over q (the optimum is at p(z |x), so this reduces to
inference) and the M-step corresponds to learning in a fully observed model. The
major benefit of this perspective is that it provides a rigorous framework in which to
extend or modify the standard EM algorithm in various ways.
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(ii) Variational EM. In some models, the E-step is intractable to compute. This is because
the normalization constant of the posterior p(z |x) = p(z,x)/p(x) is the marginal
likelihood p(x), which is frequently intractable to compute. A natural solution is to
use variational inference for the E-step instead, and in particular, to use a mean field
approximation q(z) to p(z |x). Using a mean field approximation and then maximizing
the same free energy F in the same fashion guarantees that we are still maximizing a
lower bound on p(x), simply by the lower bound property of mean field. Explicitly,
in the free energy above, p̃ is p(z,x) and q is q(z), and both of these factorize (p by
the model definition and q by the mean field assumption).

18. Undirected models. In contrast with directed models, the fundamental characteristic of undi-
rected models is that the local factors are arbitrary nonnegative functions, and so the partition
function is needed to ensure the global distribution is normalized. All the local structures are
then coupled through the partition function, and many of the decomposition properties of di-
rected models fail to hold. This makes many tasks more difficult in undirected models.

(a) Maximum likelihood. The lack of decomposability means that the parameter estimation
problem does not have a closed form solution, but needs to be solved via an algorithm like
gradient descent (or something better). Each step of the optimization algorithm requires
running inference on the network, which can make this a difficult process. A significant
amount of work has thus gone into finding alternate objectives that are easier to optimize,
or into using approximate inference.

(b) Alternate objectives. Because maximum likelihood estimation in undirected models is dif-
ficult (due to having to do inference in the inner loop), there are a number of alternate
objectives for the learning problem that are easier to optimize (e.g., because they some-
how avoid dealing with the partition function). These include pseudolikelihood, contrastive
divergence, and others. We focus on large margin methods here.

(i) Large margin. In many situations, the goal of fitting a model is to use it to predict
particular outcomes (i.e., once we have the parameters we intend to carry out MAP
inference to compute, say, some kind of optimal labeling of the data). The main idea
behind large margin methods is to train the model in a way that is explicit about
MAP inference (i.e., structured prediction) being the main use case.

(ii) Structural support vector machines. Structural support vector machines are analogues
of standard support vector machines in which the goal is structured prediction rather
than binary classification. This can also be viewed as a particular training method
for conditional random fields p(y |x) (again, in the case where the goal is to use the
CRF for prediction). It is also possible to include latent variables, though this makes
learning more difficult.

(iii) Learning structured prediction models. The setup of the problem means that we need
to distinguish not between two outcomes, but exponentially many. The effect of this is
that the optimization problem that needs to be solved is convex, but has exponentially
many constraints. The models are thus trained using cutting plane methods that
introduce constraints one at a time; these methods can be shown to converge before
too many constraints are added. These cutting plane methods use MAP inference as
a subroutine. If latent variables are included, the problem becomes a difference of
convex optimization problem amenable to the convex-concave procedure.

19. Bayesian learning. The core idea of Bayesian learning is to reduce learning to the inference
problem by treating parameters as random variables. Explicitly, we make a large joint model
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p(x, z, θ) involving observed variables x, latent variables z, and the parameters θ, and then pose
the learning problem as computing the posterior distribution p(θ |x) of the parameters given
the data. This approach is much more resistant to overfitting. Another defining characteristic
of Bayesian methodology is to maintain full distributions over unknown quantities rather than
resorting to point estimators, and then integrating over these ‘nuisance’ parameters when making
any predictions. For example, predicting future outcomes is done via the predictive distribution
p(xnew |x) =

∫
p(xnew | θ)p(θ |x) dθ. For more on the Bayesian approach to statistics, and some

of the philosophical distinctions between the Bayesian and frequentist perspectives, see, e.g.,
[Fre95, Ber02, GCSR04, Efr05].

(a) Priors. A major philosophical and practical issue in the use of Bayesian methods is where
priors come from. The main approach considered in class was to use conjugate priors,
whose major benefit is computational convenience. This is often the most pressing issue
given the complexity of the models used in machine learning. However, there are many
other approaches; for more on this, see the references above.

(b) Variational Bayes. Computing the posterior is often difficult (due to the marginal likelihood
being the normalization constant), so we can again turn to variational inference algorithms
to make this easier. In particular, using mean field inference to approximate the posterior
guarantees a lower bound on the marginal likelihood, simply because of the lower bound
property of mean field. When we use a mean field approximation that decouples the pa-
rameters and latent variables, this method is referred to as variational Bayes. Variational
Bayesian learning algorithms often look similar to EM or variational EM algorithms. Vari-
ational EM and variational Bayesian algorithms are often used in complex latent variable
models like topic models.

20. Structure learning. Structure learning can refer to a variety of tasks: learning the dimensionality
of latent variables, learning the graph topology over a known set of variables, selecting from a
set of candidate models, and so on. There are several approaches to structure learning (such as
constraint-based learning and Bayesian model averaging), but we focus on score-based methods
here for brevity. (Roughly, the Bayesian approach is mostly a natural extension of standard
Bayesian models, except that the model structure is also thrown into the big joint model, and
then we integrate over all the different models when making predictions.)

(a) Score-based learning. Score-based methods address learning as a model selection problem.
We define a hypothesis space of potential models and a scoring function that measures
how well the model fits the observed data. The problem is then to find the highest-scoring
network structure (via search or some other procedure).

(b) Marginal likelihood. The marginal likelihood of the data is

p(x | G) =

∫
Θ
p(x | θG ,G)p(θG | G) dθG ,

where G is the particular model or structure being scored. Note that this is fundamentally
different from the likelihood score because we integrate over the parameters. If a prior over
structures is also included, this gives the Bayesian score, but the prior tends to have little
effect on the overall score, so the marginal likelihood is the key quantity. In fully observed
Bayesian networks, the marginal likelihood can be computed efficiently, but this involves
a difficult inference problem in partially observed Bayesian networks, and it is difficult to
evaluate even with approximate inference in undirected models.

(c) Cheeseman-Stutz approximation. The Cheeseman-Stutz score is one approximation to the
Bayesian score that is efficient to compute and also happens to provide a lower bound on
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the marginal likelihood. This score is useful for Bayesian networks with hidden variables.
We could also directly apply a variational Bayesian approach, which would also guarantee
a lower bound as a consequence of the mean field lower bound; it can be shown that the
variational bound is at least as tight as the Cheeseman-Stutz bound.

(d) `1 regularization.9 In the undirected case, the marginal likelihood is difficult to deal with,
even when using approximations. An important alternative is to use the `1 regularized like-
lihood score (i.e., a MAP score); the use of regularization avoids the overfitting properties
of the likelihood score, and the sparsity-inducing properties of `1 regularization implicitly
perform model selection by effectively erasing a number of the edges. A useful property
of the `1 regularized likelihood is that it is convex, which confers a number of advantages.
However, we cannot simply solve this problem using an off-the-shelf optimization algorithm:
Beginning with a fully connected model and then attempting to sparsify would result in an
intractably large problem, so this problem is solved with a specialized algorithm.

21. Bayesian nonparametrics. The core idea in Bayesian nonparametrics is to move beyond (para-
metric) exponential family representations. The parametric distributions used as priors in clas-
sical Bayesian analysis are replaced with stochastic processes. Combining such a prior with a
likelihood yields a posterior distribution that is also a stochastic process. Bayesian learning in
this setting involves updating the prior stochastic process into the posterior process. There are
several uses for models based on these ideas. (Though the use of Bayesian nonparametric mod-
els is a representational issue, many of the motivations for and challenges in using them involve
inference and learning, so it is included in this section.) There are a number of uses of Bayesian
nonparametric models and stochastic process priors we did not cover; for more on some of these,
see [BGJ10] and the references in [Ble07].

(a) Model selection. Nonparametric models provide a different approach to model selection. In
particular, there is no need to, say, fix the dimensionality of latent variables (e.g., the number
of clusters in a cluster model) in advance, and these values can be automatically learned
from the data as part of the standard learning procedure. This said, the mathematical
structure of the models does enforce certain implicit assumptions on the values of these
quantities (e.g., the number of clusters in a Dirichlet process mixture model is logarithmic
in the number of examples).

(b) Dirichlet processes. The Dirichlet process is perhaps the most central stochastic process
used in Bayesian nonparametric models. (Another important one is the Gaussian process.)
The Dirichlet process is a measure over discrete distributions over a potentially unbounded
number of outcomes. There are different perspectives on the Dirichlet process that lead to
other closely related distributions, like the Chinese restaurant process or Pólya urn.

(c) Exchangeability. Exchangeability is a property that is particularly important in the context
of Bayesian nonparametrics. A joint distribution is exchangeable if it is invariant under
permuting the random variables; i.e., the order of the data doesn’t matter. (This is ex-
actly like the ‘bag of words’ assumption in natural language processing.) There are two
major implications of this property: first, the de Finetti theorem applies, and second, it
significantly simplifies the inference algorithms for these models.

9More broadly, `1 regularization now plays a major role in high-dimensional statistics, machine learning, and signal
processing; see, e.g., [CP09, BDE09] for some more on this.
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