
CS 228T Problem Set 1

April 8, 2011

Instructions. The lengths listed for each problem are suggested maximum lengths for typed so-
lutions, not minimum; solving the problems fully in less space is possible. Some questions may
be related to published research papers, so do not refer to any outside sources to complete this
assignment, in accordance with the honor code. If you work in groups, indicate in your solutions
who you worked with.

1. Annealed importance sampling (18 points, 2 pages). Do exercise 12.25 from the book.

Depending on the edition of the textbook you have, there may be a small typo in part (b) of
the question, so we have reproduced it here. Define

f∗(x1, . . . ,xk) = f0(x1)

k−1∏
i=1

T −1i (xi → xi+1),

and define p∗(x1, . . . ,xk) ∝ f∗(x1, . . . ,xk). Use your answer from part (a) to show that
p∗(x1) = p(x1).

2. Sampling for the correspondence problem (18 points, 1 page). Let G = (U, V,E) be an
undirected weighted bipartite graph, where U is the first set of nodes, V is the second set
of nodes, and E is the set of edges connecting nodes in U to nodes in V . The weight of an
edge is given by w(u, v) ≥ 0. Suppose the graph is fully connected, so E = U × V , and that
|U | = |V | = n.

An assignment A is a set of n edges where each vertex is incident to exactly one edge. Let
A(u) denote the node in V such that (u,A(u)) ∈ A. Let

p(A) ∝ exp

{
−
∑
u∈U

w(u,A(u))

}

be a distribution over assignmentsA. This question examines proposal distributions q(A → A′)
for sampling from p using the Metropolis-Hastings algorithm. The most obvious proposal
distribution takes two matched edges (u1, v1) and (u2, v2) in A at random and swaps the
assignments, but this method often mixes extremely slowly, so we consider the alternative
method below.

Let A be some initial assignment. We describe a particular method of traversing edges in G,
and will denote this sequence of edges as R.
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(a) Pick a random node u ∈ U .

(b) Traverse the edge (u, v) according to the transition probabilities

r(u, v) =
exp(−w(u, v))∑
v exp(−w(u, v))

.

(c) The node v was previously matched to some u′ ∈ U . Traverse the previous matched
edge (v, u′).

(d) Go back to (b) and repeat until a cycle is formed, ending at some u′′ visited earlier.

(e) It is possible that u′′ is not the same as u, in which case the path R looks like a cycle
with a ‘tail’ hanging off the end; the tail is a path between u′′ and the initial node u.
If we erase this tail, a cycle C remains. This cycle is alternating in the sense that it
alternates between edges that are missing and edges that are present in A. Then the
proposal is A′ = A⊕ C, where ⊕ denotes symmetric difference.

For example, suppose the sequence of nodes traversed is

u1 → v1 → u2 → v2 → u3 → v3 → u4 → v1 → u2.

In this case, C is u2 − v2 − u3 − v3 − u4 − v1 − u2, and the tail is u1 − v1.
Note that it is possible for R to be a path through the graph that does not result in the
assignment changing at all. This is because, in step (b), the selected v may be the one that
was already matched to u. In this case, R is the path of traversed edges, while C is the empty
set, so A′ = A⊕ C = A. In other cases, C may be equal to R.

Show that the acceptance ratio

α =
p(A′)

p(A)
· q(A

′ → A)

q(A→ A′)

for this method is always 1.

Hint. Try to express the ratio p(A′)/p(A) in terms of r(u, v) to have factors cancel with
factors in q(A′ → A) and q(A→ A′).

3. Auxiliary variable methods and log-linear models (10 points, 1 page). Recall that in auxiliary
variable methods, we define a space of auxiliary variables u with conditional distribution
p(u | x), then sample from the joint distribution π(x, u) = π(x)p(u | x) by alternating the
transition

TU ((x, u)→ (x, u′)) = p(u′ | x)

with some transition TX((x, u) → (x′, u)) that satisfies detailed balance with respect to
π(x, u). Because π(u, x) = π(x)p(u | x), we can then throw away the u component from the
resulting sample.

Suppose X is a pairwise Markov random field with graph G = (V,E) and distribution

π(X) ∝ π0(X) exp

 ∑
(i,j)∈E

∑
k,l

βklij f
kl
ij (Xi, Xj)


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where π0(X) =
∏
i φi(Xi) is a product of singleton factors, βklij > 0, and

fklij (Xi, Xj) = 1[Xi = xki , Xj = xlj ],

where xki denotes the kth outcome for variable Xi.

We now sample each uklij independently uniformly in the interval [0, exp(βklij f
kl
ij (xi, xj))], i.e.,

p(uklij | x) = exp(−βklij fklij (xi, xj)) · 1[0 ≤ uklij ≤ exp(βklij f
kl
ij (xi, xj))].

Suppose we think of each indicator as a constraint that is inactive when it evaluates to zero
and active when it evaluates to one. The original distribution π(X) can then be viewed as a
simple distribution π0 with additional softened constraints mixed in.

(a) How does fklij being active or inactive affect the samples uklij?

(b) Explicitly characterize the sampling distribution π(X | u) and state a condition on
uklij that implies that the sampled x must satisfy the constraint specified by fklij . Your

expression for π(X | u) should be in terms of the φi, β
kl
ij , and uklij . Be sure to specify

both the proposal and the acceptance probability.

(c) If the MRF is an Ising model, we can represent it as a log-linear model in two equivalent
ways: either by using a single function

fij(Xi, Xj) = 1[Xi = Xj ]

for each edge, or by using a set of distinct functions

fkij(Xi, Xj) = 1[Xi = xki , Xj = xkj ],

where all these functions share the same coefficient βij . If we use this auxiliary variable
sampling strategy, the first model gives rise to the Swendsen-Wang algorithm, and the
second to the sampling approach you derived in the previous parts. Which is likely to
give rise to better mixing in practice?

4. Approximating the marginal polytope (18 points, 2 pages). Consider the local consistency
polytope defined in §11.3.6.

(a) Show that, for any clique tree, the local consistency polytope is equal to the marginal
polytope. (You are allowed to cite any theorems from the textbook; the proof need not
be ‘from scratch’.)

(b) Show that, for some cluster graph that is not a clique tree, the marginal polytope is
strictly contained in the local consistency polytope. In other words, give an example of
a parameterization for a graphical model that satisfies the local consistency constraints
but does not correspond to any valid probability distribution.

(c) The marginal polytope is defined by the intersection of a large number of linear con-
straints. The local consistency polytope is an approximation obtained by taking a small
subset of these constraints; geometrically, the local consistency polytope is an ‘outer
bound’ to the marginal polytope. A natural approach to improving this approximation
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is to add more constraints that hold for any element of the marginal polytope, thus
tightening the outer bound.

One such class of constraints is the set of cycle inequalities. Consider a graph G =
(V,E) with n vertices corresponding to binary random variables. Given an assignment
x ∈ {0, 1}n, we say that (i, j) ∈ E is cut if xi 6= xj .

i. Show that any cycle in G must have an even (possibly zero) number of cut edges.

ii. Using part (i), show that for any cycle C and any F ⊆ C with |F | odd, we have∑
(i,j)∈C−F

1[xi 6= xj ] +
∑

(i,j)∈F

1[xi = xj ] ≥ 1.

(Both C and F are sets of edges in G, so |F | being odd means that F contains an
odd number of edges. Also, note that F need not be a cycle.)

iii. Let G = (V,E) be a pairwise binary Markov random field. Consider a standard
Bethe cluster graph for G, so the large clusters are over pairs (Xi, Xj) for edges
(i, j) ∈ E. Use the property above to write down a set of constraints on the
pseudo-marginals βij(Xi, Xj) that must hold for every distribution Q.

Note. The standard Bethe cluster graph discussed in the book also includes singleton
clusters, but you should ignore those for the purposes of this question.

5. Region graphs and generalized belief propagation (18 points, 1 page). We will investigate a
class of approximations to the exact inference problem that includes Bethe approximation as
a special case.

Let Φ be a set of factors for a graphical model over a set of variables X. A region graph
R = (V,E) is a directed graph where each vertex r ∈ V , also called a region, is associated
with a set of variables Cr ⊆ X with outcome space Cr, and has a counting number κr ∈ R.
Below, cr ∈ Cr will denote an assignment to Cr. If s → r ∈ E, then Cr is a subset of Cs.
Each factor φ ∈ Φ is associated with a set of regions α(φ); each r ∈ α(φ) must contain the
scope of φ.

Let U(r), U∗(r), D(r), and D∗(r) denote the parents, ancestors, children, and descendants,
respectively, of r in R, and let D+(r) = {r}∪D∗(r). There are some properties a valid region
graph must satisfy. The regions with a given variable Xi in scope must form a connected
component, and the counting numbers across the regions in the component must sum to 1;
the same holds for the set of regions α(φ) for each φ ∈ Φ.

These conditions can be enforced by requiring that

κr = 1−
∑

s∈U∗(r)

κs,

which ensures that the sum of the counting numbers of r and its ancestors will be 1. Finally,
for each Xi, there must be a unique region ri such that every other region with Xi in scope
is an ancestor of ri; a similar requirement must hold for each φ.

The energy functional associated with a region graph R is

F̃ [P̃ , Q] =
∑
r∈V

κrEβr [logψr] +
∑
r∈V

κrH(βr),
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where ψr is the product of the factors assigned to r and βr is the belief over Cr.

Consider the optimization problem

maximize F̃ [P̃ , Q]
subject to

∑
cr
βr(cr) = 1 ∀r ∈ V∑

cs∼cr βs(cs) = βr(cr) ∀(s→ r) ∈ E, cr ∈ Cr
βr(cr) ≥ 0 ∀r ∈ V, cr ∈ Cr,

with variable Q = {βr | r ∈ V }. This problem reduces to the usual Bethe approximation for
particular choices of regions and counting numbers.

(a) Let G be a pairwise Markov random field in the form of a 3× 3 grid. Consider a region
graph with 8 regions, where the top layer consists of the four 2 × 2 grids in G and
their children are the two-variable sepsets. Suppose the four top regions have counting
number 1 and the four sepsets have counting number −1. Is this a valid region graph
for G? If not, modify this construction so the resulting region graph is valid.

(b) Show what fixed point equations a solution must satisfy by forming the Lagrangian and
differentiating with respect to βr(cr).

Note. This question is based on material in §11.3.7 if you want further background.

6. Exponential families and the marginal polytope (18 points, 2 pages). In this question, we
explore a generalization of the concept of the marginal polytope that holds for any model in
the exponential family. This provides an alternative perspective on the marginal polytope
and provides some additional geometric intuition.

Let X be a random variable with outcome space X . Let P be a linear exponential family
with sufficient statistics τα : X → R, α = 1, . . . ,K, and overall sufficient statistics function
τ : X → RK , where τ(x) = (τ1(x), . . . , τK(x)). Members of P then take the form

pθ(x) = exp{〈θ, τ(x)〉 −A(θ)},

where A(θ) = logZ(θ). The auxiliary measure is assumed to be a constant.

Let p be any probability distribution on X , not necessarily in P. The mean parameter µα
associated with a sufficient statistic τα is defined as the expectation

µα = Ep[τα(X)]

for each α = 1, . . . ,K. We can then define the vector of mean parameters µ = (µ1, . . . , µK)
with respect to an arbitrary distribution p. The set of realizable mean parameters

M =
{
µ ∈ RK | ∃p : Ep[τα(X)] = µα, α = 1, . . . ,K

}
is the set of all expected sufficient statistics that can be obtained for some p.

(a) Show that M is a convex subset of RK . Here, X may be a continuous variable.

(b) Suppose X is finite. Show that M is the convex hull of {τ(x) | x ∈ X}.

5



(c) Any discrete Markov random field with graph G = (V,E) can be represented as a
linear exponential family, taking the sufficient statistics to be indicator functions of the
(finitely many) possible outcomes in each clique. For example, the sufficient statistics
for the (pairwise) Ising model would be 1[Xs = α] for s ∈ V and α ∈ {0, 1} and
1[(Xs, Xt) = (α, β)] for all (s, t) ∈ E and α, β ∈ {0, 1}. This is sometimes called the
standard overcomplete representation.

Explain why M reduces to the marginal polytope for this class of models.
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