
CS 228T Problem Set 3

May 6, 2011

Instructions. The lengths listed for each problem are suggested maximum lengths for typed so-
lutions, not minimum; solving the problems fully in less space is possible. Some questions may
be related to published research papers, so do not refer to any outside sources to complete this
assignment, in accordance with the honor code. If you work in groups, indicate in your solutions
who you worked with.

1. Dual decomposition for pose segmentation (17 points, 1 page). Two important problems
in computer vision are that of parsing articulated objects (e.g., the human body), called
pose estimation, and segmenting the foreground and the background, called segmentation.
Intuitively, these two problems are linked, in that solving either one would be easier if the
solution to the other were available. We consider solving these problems simultaneously
using a joint model over human poses and foreground/background labels and then using dual
decomposition for MAP inference in this model.

We construct a two-level model, where the high level handles pose estimation and the low
level handles pixel-level background segmentation. Let G = (V, E) be an undirected grid over
the pixels. Each node i ∈ V represents a pixel. Suppose we have one binary variable xi for
each pixel, where xi = 1 means that pixel i is in the foreground. Denote the full set of these
variables by x = (xi).

In addition, suppose we have an undirected tree structure T = (V ′, E ′) on the parts. For each
body part, we have a discrete set of candidate poses that the part can be in, where each pose
is characterized by parameters specifying its position and orientation. (These candidates are
generated by a procedure external to the algorithm described here.) Define yjk to be a binary
variable indicating whether body part j ∈ V ′ is in configuration k. Then the full set of part
variables is given by y = (yjk), with j ∈ V ′ and k = 1, . . . ,K, where J is the total number
of body parts and K is the number of candidate poses for each part. Note that in order to
describe a valid configuration, y must satisfy the constraint that

∑K
k=1 yjk = 1 for each j.

Suppose we have the following energy function on pixels:

E1(x) =
∑
i∈V

1[xi = 1] · θi +
∑

(i,j)∈E

1[xi 6= xj ] · θij .

Assume that the θij arises from a metric (e.g., based on differences in pixel intensities), so
this can be viewed as the energy for a pairwise metric MRF with respect to G.
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We then have the following energy function for parts:

E2(y) =
∑
p∈V ′

θp(yp) +
∑

(p,q)∈E ′
θpq(yp, yq).

Since each part candidate yjk is assumed to come with a position and orientation, we can
compute a binary mask in the image plane. The mask assigns a value to each pixel, denoted
by {wijk}i∈V , where wijk = 1 if pixel i lies on the skeleton and decreases as we move away. We
can use this to define an energy function relating the parts and the pixels:

E3(x,y) =
∑
i∈V

∑
j∈V ′

K∑
k=1

1[xi = 0, yjk = 1] · wijk.

In other words, this energy term only penalizes the case where a part candidate is active but
the pixel underneath is labeled as background.

Formulate the minimization of E1 +E2 +E3 as an integer program and show how you can use
dual decomposition to solve the dual of this integer program. Your solution should describe
the decomposition into slaves, the method for solving each one, and the update rules for the
overall algorithm. Briefly justify your design choices, particularly your choice of inference
algorithms for the slaves.

2. Incremental EM (17 points). Do exercise 19.17 from the book.

3. Variational methods for topic models (25 points, 3 pages). Here, we examine how to use
variational methods to fit a complex real-world model. Topic models are a popular class of
Bayesian models of document corpora and other kinds of data, and we will consider a simple
example of such a model; see §17.5.4 for further background and motivation.

Consider the following model for a single document w:

θ ∼ Dirichlet(α)
zn ∼ Multinomial(θ), n ∈ {1, 2, . . . , N}
wn ∼ p(wn | zn, β), n ∈ {1, 2, . . . , N},

where n indexes words in the document, and each document is assumed for simplicity to
have a fixed number of words N . Each word wn is defined to be an item from a vocabulary
indexed by {1, . . . , V }, and each wn can be viewed as a binary vector with V elements that
has a single entry set to 1 and zeroes elsewhere (i.e., an indicator representation). Each
document w = (w1, . . . , wN ) has an associated multinomial distribution, specified by θ, over
K topics, and each of the N words in the document are generated by first sampling a topic zn
and then sampling a word wn using the parameters β. Here, βij is the probability that word j
is generated from topic i. The parameters α and β are fixed but unknown (hyper)parameters,
z and θ are latent variables, and w is observed. The joint distribution is given by

p(θ, z,w |α, β) = p(θ |α) · p(z | θ) · p(w | z, β)

= p(θ |α)

N∏
n=1

p(zn | θ)p(wn | zn, β).
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We are interested both in the posterior over the latent variables, since they have some semantic
meaning, and in fitting the model to the data. It is natural to apply EM since it provides a
solution to both problems simultaneously. Given a training corpus D = {w1, . . . ,wM}, the
goal is to maximize the (incomplete) log likelihood

`(α, β) =
M∑
d=1

log p(wd |α, β).

Since this objective is additive, the problem reduces to maximizing log p(w |α, β), so in the
sequel we refer only to a single document w. The main work in the E-step is in finding the
posterior of the hidden variables p(θ, z |w, α, β), which we would like to compute in any case.
Unfortunately, the normalizer of this distribution is intractable to compute exactly, so we
will use a mean field approximation in the E-step, yielding a variational EM algorithm. In
particular, consider the family Q of approximate posteriors in the form

q(θ, z | γ, φ) = q(θ | γ)

N∏
n=1

q(zn |φn).

Here, γ is called a variational Dirichlet parameter and the φn are variational multinomial
parameters. Inference will involve computing the I-projection of the true posterior onto Q,
i.e., finding the variational parameters γ and φn that approximate the true posterior best.

(a) The following results will help in deriving explicit solutions for the E-step and the M-step.

i. Give the (linear) exponential family form of the Dirichlet distribution; specify the
natural parameters, the sufficient statistics, and the log partition function.

ii. Suppose θ ∼ Dirichlet(α). Using your exponential family parameterization for the
Dirichlet distribution, derive a simple closed-form expression for E[log θi] in terms
of α. (You will find that expressions in this form appear in the derivations below.)

(b) Write down the variational EM energy functional for this model. What quantity in
the model does this provide a lower bound for? Expand this lower bound using the
factorizations of p and q. Expand it further in terms of the model parameters α and β
and the variational parameters γ and φn.

(c) The (variational) E-step involves maximizing the lower bound in (b) with respect to γ
and φn. We employ an alternating maximization procedure, in which φn is updated to
its maximizing value and then γ is updated to its maximizing value.

i. Derive a closed-form update for φn by maximizing the lower bound with respect
to φn. (Note that this is a constrained optimization problem since each φn is a
parameter vector for a multinomial distribution.) Your answer should be in terms
of β and γ. You do not need to provide an explicit normalization constant.

ii. Derive the first-order optimality condition for γi. Show that the update

γi = αi +

N∑
n=1

φni

satisfies the condition.
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Full inference involves alternating between these two updates until the bound converges.

(d) The M-step involves maximizing the lower bound in (b) with respect to the hyperpa-
rameters α and β.

i. Derive a closed-form update for each βij . You do not need to provide an explicit
normalization constant.

ii. Derive the first-order optimality condition for αi. (Since the solution will depend on
the values of αj for j 6= i, there is no closed-form expression for the maximizing value
of αi, so this step must be carried out numerically using, e.g., Newton’s method.)

(e) Summarize your results by writing out high-level pseudocode for fitting the model to
a dataset. In this part only, you should account for the fact that there are multiple
documents in the training corpus. (This mostly involves adding an extra loop to the
pseudocode and specifying which of the parameters above are document-specific.)

Hints. At various points in the derivations, you may find the following facts useful:

• The Dirichlet distribution with parameters α1, . . . , αK > 0 has the density function

f(θ1, . . . , θK ;α1, . . . , αK) =
Γ(

∑K
i=1 αi)∏K

i=1 Γ(αi)

K∏
i=1

θαi−1
i

and is conjugate to the multinomial distribution in the sense described in §17.3.2. The
domain of f is the (k − 1)-probability simplex.

• Let A(η) be the log partition function for an exponential family distribution p with
sufficient statistics τ and natural parameters η. If X ∼ p, then ∇A(η) = Ep[τ(X)].

• The gamma function Γ is a continuous extension of the factorial function, and has the
property that Γ(x) = (x − 1)! for positive integers x. The first derivative of the log
gamma function is the digamma function and is denoted by Ψ(x). The derivative of
the digamma function is called the trigamma function and is denoted Ψ′(x). You can
leave these functions unexpanded because efficient numerical methods are available to
evaluate them.

4. Bayesian nonparametrics (25 points, 3 pages). In this problem, we will explore latent feature
models, which go beyond latent class models. Latent feature models allow each training
example to be represented by an unbounded number of latent features rather than just a
single latent class variable, as in the case of mixture models. There are several situations
where this idea is useful, but one way to think about it is that the infinite feature models
we will discuss here allow for each example to belong to multiple clusters at once. This can
be accomplished in a nonparametric Bayesian way by constructing a prior distribution on
infinite binary matrices.

Let D = {x1, . . . ,xN} be the dataset. Suppose each instance x ∈ Rn can be modeled in
terms of latent binary features f ∈ {0, 1}K according to a generative model p(x | f). (For this
problem, p(x | f) can be treated as a black box; its specific form does not matter.)

Let F ∈ {0, 1}N×K be the (latent) binary matrix obtained from placing fi into the ith row.
Here, fik = 1 if feature k is active in example i. The full generative model over all instances
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is then specified by the latent feature prior p(F) and the likelihood

p(X |F) =

N∏
i=1

p(xi | fi).

For now, assume K is finite. We specify the prior distribution over F by assuming each
example i possesses feature k with probability πk. Given hyperparameter α, the model is

πk |α ∼ Beta(α/K, 1)

fik |πk ∼ Bernoulli(πk),

for k = 1, . . . ,K and i = 1, . . . , N .

Note. Part (c) is more difficult than the other parts, but it is possible to do all the other
parts without doing it, so make sure you try (d) and (e) even if you get stuck on (c).

(a) Find an explicit expression for p(F |α). Your answer should be in terms of beta or
gamma functions and should contain no unevaluated integrals.

Note. The beta distribution with parameters α and β has the density

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1,

where the beta function

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
=

∫ 1

0
xα−1(1− x)β−1 dx

is the normalizing constant. The beta distribution is the Dirichlet distribution of order
2 and is conjugate to the Bernoulli distribution in the sense described in §17.3.2.

(b) Show how to perform Gibbs sampling in the finite latent feature model from part (a).
Explicitly, find a simple equation for p(fik | f−ik), where f−ik is the set of examples, other
than i, with feature k active.

Notes. It suffices to compute p(fik | f−ik) rather than p(fik |F−(ik)) because the columns
of F are generated independently under the prior p(F); this means we need not condition
on features other than k.

You may find the following definitions useful. Let mk =
∑N

i=1 fik be the number of

examples with feature k active, and let m
(i)
k be the number of examples, excluding

example i, with feature k active.

(c) We now move to the case of infinite features. This can be derived from an underlying
stochastic process called the Indian buffet process (IBP), much like infinite latent class
models can be derived from the Chinese restaurant process.

In the IBP, N customers enter a restaurant one after another. Each encounters a buffet
consisting of infinitely many dishes in a line. The first starts at the left and takes a
serving from each dish, stopping after a Poisson(α) number of dishes. The ith customer
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moves along the buffet and samples dishes in proportion to their popularity, i.e., he
tries a dish with probability mk/i, where mk is the number of previous customers who
have sampled a dish. Having reached the end of all previously sampled dishes, the ith
customer then tries a Poisson(α/i) number of new dishes. The entries fik in our (now
infinite) matrix F indicate whether the ith customer tried the kth dish.

If F ∼ IBP(α), prove that

p(F |α) = αT · exp(−αHN ) ·
N∏
i=1

1

K
(i)
1 !
·
T∏
k=1

(mk − 1)!(N −mk)!

N !
,

where HN =
∑N

i=1(1/i) is the Nth harmonic number, T is the total number of dishes

sampled by the N customers, K
(i)
1 be the number of new dishes sampled by the ith

customer, and mk is the number of customers who tried dish k.

Hint. Think about all customers at once and regroup terms. As above, let m
(i)
k be the

number of customers, excluding i, who have sampled k. In the algebra, it may be useful

to take m
(i)
k to be 1 if i is the first to sample k.

(d) In latent class models, the particular values of the class variables did not have any
particular meaning (i.e., they were exchangeable). In this case, the features do not have
any predetermined meaning, so we want to treat a matrix F′ which simply reorders the
columns of F as equivalent to F, i.e., p(F |α) = p(F′ |α) if F and F′ are the same up to
permuting columns. This will play the same role for binary matrices here as partitions
did for assignment vectors in the Dirichlet process mixture model.

Let lof(·) be a function that maps a binary matrix to a left-ordered binary matrix, in
which the columns are ordered from left to right in decreasing order of the magnitude of
the binary number expressed by that column. Let [F] be the equivalence class of F under
this relation, i.e., [F] is the set of all binary matrices that map to the same left-ordered
matrix as F. The number of matrices in any given [F] is∏N

i=1K
(i)
1 !∏2N−1

h=0 Kh!
,

where Kh is the number of columns with identical entries h.

Using this fact and part (c), find a formula for p([F] |α). Make sure your expression does
not depend on the customer ordering; this implies that the distribution is exchangeable.

(e) Show how to perform Gibbs sampling for the infinite model you defined in part (d).
What is its relation to the expression you found in part (b)?

Hint. Use exchangeability.

5. Sampling methods for the marginal likelihood (16 points, 2 pages). This problem considers
two simple Monte Carlo methods for estimating the marginal likelihood, which is the basis
for Bayesian model selection. Note that neither method is ideal, but several better methods
based on these ideas are in common use.
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Let p(D | θ) be the data likelihood and let p(θ) be the prior over the model parameters.
Assume that p(D | θ) can be evaluated reasonably efficiently.

(a) Consider a normalized importance sampling estimator for the marginal likelihood, in
which we generate M parameter samples θm from some proposal distribution q(θ) and
then estimate the marginal likelihood as

p̂(D) =

∑M
m=1wmp(D | θm)∑M

m=1wm
,

where wm = p(θm)/q(θm). Suppose we sample a set of θm from the posterior p(θ |D)
(possibly with MCMC), so the proposal q(θ) is p(θ |D).

i. Simplify the form of the estimator to derive a formula for the marginal likelihood
that uses only quantities that can be computed efficiently. Your expression should
take the form of a kind of average of terms that are easy to compute.

ii. Give a reason why we would sample from the posterior rather than the prior, even
though the prior is generally easier to sample from.

iii. Describe some serious drawbacks of this method when posterior samples are used.

Hint. Think about the relationship among the prior, the data, the posterior, and
the marginal likelihood.

(b) Let
pt(θ |D) = (1/Zt)p(D | θ)tp(θ),

where

Zt =

∫
Θ
p(D | θ)tp(θ) dθ.

The parameter t can be viewed as a temperature.

i. Show that

log p(D) =

∫ 1

0
Ept [log p(D | θ)] dt.

Hint. Consider d/dt logZt.

ii. Describe how you would approximate the integral above by evaluating its value
at several discrete values of t, i.e., 0 = t1 < t2 < · · · < tk = 1. In particular,
describe how to apply one of the MCMC techniques discussed previously in the
course to estimate the quantities necessary for approximating the integral. The
method should be more efficient than running k independent chains.
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