CS 228T Problem Set 4

May 20, 2011

Instructions. The lengths listed for each problem are suggested mazrimum lengths for typed so-
lutions, not minimum; solving the problems fully in less space is possible. Some questions may
be related to published research papers, so do not refer to any outside sources to complete this
assignment, in accordance with the honor code. If you work in groups, indicate in your solutions
who you worked with.

1. Markov network structure learning (16 points, 2 pages).

(a) Do exercise 20.16 from the book.
(b) Do exercise 20.18 from the book.

2. Cheeseman-Stutz lower bound (14 points, 2 pages). Suppose we have a directed acyclic graph
with parameters 6 giving rise to an i.i.d. dataset x = {x1,...,xyx} with corresponding latent
variables z = {z1,...,zn}, where each latent variable has cardinality k. Recall that the
incomplete data likelihood is

p(x10) = p(z|0)p(x|2,0),
and the marginal likelihood, or evidence, is
o) = [ p(O)plx18) d0 = [ p(0) S pla|0)p(x|2.0) db.

The marginal likelihood is the key quantity used in Bayesian model selection tasks, such as
structure learning, selecting the cardinality of latent variables, selecting the dimensionality
of vectors of latent variables, and so on. Unfortunately, it is intractable to compute in most
situations of interest, hence the need for approximations.

Let 6 be the result of the M-step of EM, and let {p(z; ]xi,é)}fvzl be the set of posteriors
over the hidden variables obtained in the subsequent E-step of EM. Let 2z = {2;}}Y, be a
completion of the hidden variables such that z;; = p(z; = j|x, é), fori =1,...,N. The
Cheeseman-Stutz approximation to the marginal likelihood is given by

pes(x) = plx, >p(x|9)



Show that the Cheeseman-Stutz approximation provides a lower bound to the marginal like-
lihood, ¢.e., that

Hints. Consider Jensen’s inequality.

You can assume that there exists a z; such that

logp(2:, % |0) = p(zi | x,0) log p(xi, ; | 0).

z;

. Maximum entropy learning (18 points, 2 pages).

(a) Do exercise 20.9a from the book.

(b) Do exercise 20.10 from the book, but use the following problem instead:

maximize Z?zl H(B:)

subject to Eﬁi [f”] = Ep[f”] \V/’L,j
Zci Bz(cz) =1 Vi
Bl(cz) Z 0 Vi, Ci,

with variables f;(c;).

. Maz-margin Markov networks (17 points, 1 page). Let S = {(x;,yi)}Y; be a labeled training
set. Suppose we have a mapping from an input x to the corresponding Markov network
graph G(x) = (V, £), where the nodes V correspond to the variables in y, and let G; = G(x;).
Suppose the graph is a log-linear conditional random field that represents the conditional
distribution p(y | x). In particular, suppose the CRF is defined via

T
log pw(y | x) = W' ¢(x,y) — log Zw(x).
Moreover, assume that the graph is tree-structured. We now consider margin-based training
approaches for this model.
Maximum-margin estimation of this model can be formulated as solving the following opti-

mization problem:

minimize  (1/2)[wl3 +C XY, &
subject to wTégb,-(y) > Ayiy) — &, Vi,ye)y
& >0, Vi,

where 0¢;(y) = ¢(xi,y:)—d(xi,y). (This is the primal structural SVM with margin rescaling.)
The dual is given by
maximize 3L, 3y oa(y)AWiy) — (1/2)| £k oy aa(y)50i(y) I3

subject to >_J ai(y) = C, Vi
az(y) > 07 Viaya



with variables «;(y). The primal formulation has exponentially many constraints in the
number of labels, so the dual has exponentially many variables. For example, supposing
that Y = Hfil Vi, where each ); = {y1,...,y4}, then K is the number of labels being
simultaneously selected.

Assume that the loss function is decomposable, i.e., that

A(yzay) = Z A(y’i07y0)7
CGC(GZ')

where C(G;) denotes the cliques of G;. (Hamming loss is a special case.) Assume that d¢;
decomposes similarly. Show how to use the structure of the model to reparameterize the dual
as an equivalent problem with only polynomially many variables.

. Cutting plane methods for structural SVMs (14 points, 1 page). Structural support vector
machines extend standard support vector machines for structured prediction. The goal is to
learn parameters w to predict a structured output y € )Y from input features x. Given a
joint feature vector ¢(x,y) describing the relationship between inputs and outputs, we learn
a linear prediction rule of the form

y = argmax WT¢(X7 Y)
yey

Let A(y,y) be the loss incurred by predicting y for a given example with true output y.

Let D = {(x1,¥1),- -, (Xn,yn)} be the training set. The n-slack formulation of the structural
SVM (with margin rescaling) is the problem

minimize  (1/2)[[w|3 + (C/n) 31, &
subject to wdgs(y) > Alyi,y) =& i=1,...,n, y€Y
51207 izlv"')nu

with variables w and &;, where d¢;(y) = ¢(Xi,yi) — ¢(x;,y). Here, we have one slack variable
& for each training example. This problem can be reformulated using only a single slack
variable &, yielding the 1-slack formulation

minimize  (1/2)||w||3 4+ C¢
subject to  (1/n)w’ Y1 6¢i(y:) > (1/n) Yoisy Alyi, y:) =& V(I1,...,9n) € V"
§>0,

with variables w and &. Here, we only have a single slack variable &, but we have |)Y|"
constraints, one for each combination of labels.

(a) Show that these two formulations are equivalent, in that any solution w* to the 1-slack
formulation is also a solution to the n-slack formulation, and that £* = (1/n) Y1 | &F.

(b) The motivation for introducing the 1-slack formulation is that although it has |Y|"
constraints rather than n|Y|, there is an efficient cutting plane method for solving it.
Cutting plane methods form a class of optimization algorithms based on the use of
cutting planes, which are hyperplanes that separate the current point from the optimal



points. Each iteration introduces a new cutting plane (corresponding to a particular
constraint) that slices off more of the space that is infeasible. Cutting plane methods
are often used in problems with with very large numbers of constraints, as we have here.
It can be shown that using a cutting plane method to solve the 1-slack formulation
here is much more efficient and scalable than the standard cutting plane method for the
n-slack formulation discussed by Tsochantaridis et al.

Specifically, at each iteration, we introduce a single constraint by first solving

maximize (1/n)Y " Ay, ¥i) — (1/n)w?t Yo 00i(¥i),

with variable (y1,...,¥n) € Y". The solution defines the most violated constraint. Show
how to find the solution to this problem efficiently, i.e., without simply searching over
all |Y|" possible joint assignments.

The overall algorithm involves solving the original problem above but only with the
small subset of constraints introduced via this procedure (this subset of constraints is
called the working set). It can be shown that the number of constraints that need to
be introduced to converge to the solution is small and independent of the number of
training examples.

6. Latent structural SVMs (11 points, 1 page). The standard structural SVM objective can
equivalently be written without explicit use of slack variables, as in Yu and Joachims:

minimize (1/2)[[w|3 + C 3L, (maxy (A(y:,¥) + W é(xi,§)) — w' d(xi,yi))

with variables w. The objective of this problem is convex because it is the difference between
a convex term and a linear term. Recall that the second term was shown to be a convex
upper bound on the desired loss function A(y;,y;).

The latent structural SVM introduces latent variables h, giving features ¢(x,y,h) and the
prediction rule

fu() = argmaxwT(x, y, h).
y,h

The loss function A can also depend on the latent variables.

(a) The latent structural SVM objective is

Yy,

(1/2)wl3+C > (n}aﬁx {WT¢(xi, y,h) + A(ys, y, ﬁ)}) = <m3XWT¢(Xi, i, h)) :
=1 ]

a difference of convex functions. Show that

(qu {WTqS(Xi,S’, fl)) + Ay, y, h)}) - <m€XwT¢(Xi,yi7 h))

y,h

is a valid upper bound on A(y;, ¥i(w), hi(w)).



(b) Algorithm 1 of Yu and Joachims describes a convex-concave procedure for optimizing
the latent structural SVM objective, which is the difference of two convex functions. At
each iteration, the algorithm requires finding a hyperplane v; such that

—g(w) < —g(we) —of (W —wy).

Using subdifferentials, characterize the set of vectors vy that satisfy this inequality. Show
that the particular choice

n
v =Y é(xi,yi,h})
i=1
satisfies the desired inequality, where

h} = argmax w ¢(x;,yi, h)
h

for each 1.

7. First-order methods for {1 regularized loss minimization (10 points, 2 pages). This question
presents a state of the art algorithm for solving convex optimization problems involving ¢;
regularization. The use of ¢; regularization as a heuristic to avoid exhaustive combinatorial
search has become widespread because in a variety of problems (e.g., structure learning, high-
dimensional regression, signal processing), it is desirable to simultaneously fit the model and
select a small subset of the variables of interest. This can help generalization performance
and make the models more interpretable. For example, in some applications, there are a
large number of candidate features, but only a small subset are expected to be predictive
of a particular outcome. Moreover, it can be shown that the £; norm is the tightest convex
relaxation of the £y pseudonorm (which requires combinatorial search to optimize), and that
despite its being a heuristic, it (provably) happens to select the best subset of variables in a
surprisingly wide range of situations.

Many modern algorithms for ¢; regularized problems use prozimal operators to effectively
decouple the nonsmooth ¢; term from the smooth unregularized objective. This allows for
solving the problem without resorting to subgradient methods or other generic algorithms for
nondifferentiable convex optimization, which are slow in general because they do not exploit
the structure of the problem.

The proximal operator of a convex function h is
prox;,(z) = argmin (h(z) +(1/2)]|z — :c||§) :
z

The quadratic penalty term is called proximal reqularization. When

W) = To(e) = {0 red

400 otherwise,

then prox;, is (Euclidean) projection onto the closed convex set C. In convex analysis, I¢
is called the indicator function of the set C. If h(z) = A||z||1, then prox; is given in closed



form by the soft thresholding operator

Ti— A T > A
prox,(z); = Sx(z); = ¢ 0 |z < A
i+ A xp < =

This operator acts elementwise on x and can be computed very efficiently.

Note. All the functions in this problem are assumed to be extended-real-valued as needed for
notational convenience; see §3.1.2 in Boyd and Vandenberghe for background.

(a)

Consider the problem
minimize f(z) = g(z) + h(zx),

where g is convex and differentiable (with dom g = R™) and h is convex and potentially
nondifferentiable. Then the proximal gradient algorithm consists of the iteration

21 = prox s, (xk - oszg(ack)) ,

where o > 0 is a step size and k is an iteration counter. Explain why this can be viewed
as a generalization of the projected gradient algorithm. Briefly describe in English what
this algorithm does h(x) = A||z||1.

For the same problem, consider the algorithm

2" = prox,, (yk — ang(yk))
k—1
k+1 .kt k+1 _ k
Y : T + k12 (x x ) .

Here, y is an auxiliary variable. This algorithm is one of a class of methods known
as optimal first-order methods, and is sometimes called FISTA (fast iterative-shrinkage
thresholding algorithm) when h(xz) = A||z||1. It can be shown that f(2*) — f*, where
f* is the optimal value of the problem, decreases at least as fast as O(1/k?) if the step
sizes are chosen appropriately. Moreover, it can be shown that this convergence rate is
the fastest possible (in order) among the class of first-order methods, i.e., methods that
select z**1 in

0 +span{Vf(x0),...,Vf(a:k)}.

By comparison, gradient descent has a convergence rate of O(1/k) (though in any case
it cannot be used on ¢; regularized problems).

Derive a FISTA-based method to fit an ¢; regularized logistic regression model, i.e., to
carry out MAP estimation. Note that only the feature weights should be regularized,
not the intercept term.

Note. Here, we use logistic regression since it can be viewed as the simplest example of
a conditional random field.



