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Instructions. Do not refer to any outside sources to complete this assignment, in accordance with
the honor code. If you discussed any problems with other students, indicate that in your solutions.

1. Gaussian discriminant analysis. Consider a dataset (x1, y1), . . . , (xN , yN ) with xi ∈ Rn and
yi ∈ {0, 1}, and consider the following model for the joint distribution p(x, y):

y ∼ Bernoulli(φ)

x | y = 0 ∼ N(µ0,Σ)

x | y = 1 ∼ N(µ1,Σ),

with parameters φ, µ0, µ1, and Σ.

(a) Suppose we already have estimates of all the four parameters and now want to make a
prediction at a new query point xnew. Show that the posterior distribution of the label
at xnew takes the form of a logistic function and can be written as

p(y = 1 |x) =
1

1 + exp(−θTx)
,

where θ is a function of φ, µ0, µ1, and Σ. (To get your answer into the form above, you
may need to add a constant feature 1 into xi and consider them as vectors in Rn+1.)
This implies, for instance, that linear discriminant analysis is a linear classifier.

(b) Show that the maximum likelihood estimates of the model parameters are given by the
following expressions:

φ̂ =
1

N

N
∑

i=1

[yi = 1],

µ̂k =

∑N
i=1

[yi = k]xi
∑N

i=1
[yi = k]

,

Σ̂ =
1

N

N
∑

i=1

(xi − µyi)(xi − µyi)
T .

Note. You can use that ∇f(X) = X−1 when f(X) = log detX with dom f = Sn
++, and

that ∇f(X) = aaT when f(X) = aTXa.
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2. Consider fitting an SVM to a linearly separable training set. Is the SVM guaranteed to choose
a decision boundary that separates the positive and negative classes?

3. Logistic regression and SVMs as regularized loss minimization. It turns out that (regularized)
logistic regression and the support vector machine optimize related objective functions.

(a) Given an example x ∈ Rn and a label y ∈ {0, 1}, the log likelihood of the example under
the logistic regression model is

y log g(x) + (1− y) log(1− g(x)),

where g(z) = 1/(1 + exp(−z)) is the sigmoid function. Now suppose we want to switch
to the convention of using the labels ỹ ∈ {−1, 1}. Show that

y log g(x) + (1− y) log(1− g(x)) = − log(1 + exp(−ỹwTx)).

In other words, the expression on the righthand side gives the likelihood of a single
example when using the {−1, 1} label convention.

(b) Given a training set {(x1, y1), . . . , (xN , yN )}, with yi ∈ {−1, 1}. Show that the maximum
likelihood estimate of the parameters is given by minimizing

N
∑

i=1

log(1 + exp(−yiw
Txi)).

(c) Consider the function f(z) = log(1 + exp(−z)). Explain in English what happens to
f under the limits z → ∞ and z → −∞. Sketch or plot the shape of f and indicate
asymptotes and intercepts in your sketch.

(d) Show that the problem

minimize t
subject to y(wTx+ b) ≥ 1− t

t ≥ 0

with variables w ∈ Rn, b ∈ R, and t ∈ R is equivalent to the unconstrained problem

minimize (1− y(wTx+ b))+

with variables w and b.

(e) Draw the function f(z) = (1−z)+ and indicate asymptotes and intercepts. The function
f is known as hinge loss; explain why this makes sense.

(f) The problem in part (d) was a version of an SVM estimation problem with a single
training example. Generalize your derivation for part (d) to derive an unconstrained
problem equivalent to the problem

minimize (1/2)‖w‖22 + λ1T t
subject to yi(w

Txi + b) ≥ 1− ti, i = 1, . . . , N
t � 0,

with variables w ∈ Rn, b ∈ R, t ∈ RN .
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4. Invariance properties of support vector machines. Recall that training an SVM involves
solving the convex optimization problem

minimize (1/2)‖w‖22 + λ1T t
subject to yi(w

Txi + b) ≥ 1− ti, i = 1, . . . , N
t � 0,

(1)

with variables w ∈ Rn, b ∈ R, t ∈ RN .

Suppose θ⋆ = (w⋆, b⋆, t⋆) is the solution to the problem above. Here, we look at some ways
in which the optimization problem we solve to fit an SVM model can be changed without
changing the predictions made by the resulting classifier.

(a) Margin scaling. One of the decisions that may have seemed arbitrary but possibly
significant in the formulation of the SVM was the choice of scaling the margin boundaries
to lie at the hyperplanes wTx+b = 1 and wTx+b = −1. Suppose we replace the 1 in the
margin constraint of the SVM with some constant κ > 0 and replace the regularization
parameter λ with κλ, giving the problem

minimize (1/2)‖w‖22 + κλ1T t
subject to yi(w

Txi + b) ≥ κ− ti, i = 1, . . . , N
t � 0.

(2)

Let θ̃⋆ = (w̃⋆, b̃⋆, t̃⋆) = κ(w⋆, b⋆, t⋆).

i. Show that θ̃⋆ is feasible for (2).

ii. Show that θ̃⋆ is the solution of (2).

iii. Show that the modified SVM makes the same classification decisions, i.e., that
sign((w̃⋆)Tx+ b̃⋆) = sign((w⋆)Tx+ b⋆).

(b) Orthogonal invariance of Gaussian kernels. Particular forms of the SVM, such as the
SVM with some choice of kernel, may have additional invariances. Recall the kernelized
dual SVM problem

maximize 1Tα− (1/2)
∑N

i,j=1
yiyjαiαjK(xi, xj)

subject to αT y = 0
0 � α � λ1,

(3)

with variable α ∈ RN . Suppose K is chosen to be the Gaussian kernel

K(x, z) = exp

(

−
‖x− z‖22

2σ2

)

.

Let D = {(xi, yi) | i = 1, . . . , N} be a training set and let D̃ = {(Qxi, yi) | i = 1, . . . , N}
be a modified dataset where the input vectors xi have been transformed by an orthogonal
matrix Q ∈ Rn×n.

i. Let α⋆ and α̃⋆ be the solution to the dual problem when using training sets D and
D̃, respectively. Show that α⋆ = α̃⋆.
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ii. Let f̂(x) and f̃(x) denote predictions on example x of SVMs trained on D and D̃,
respectively. Which of the following are true?

(A) f̂(x) = f̃(x)

(B) f̂(x) = f̃(Qx)

(C) f̂(Qx) = f̃(x)

You can use the following expression for the optimal value of b for f̃ :

b = −
maxi[yi = −1]wTϕ(Qxi) + mini[yi = 1]wTϕ(Qxi)

2
,

where ϕ is the feature map associated with the Gaussian kernel.

Note. The output of ϕ for a Gaussian kernel is actually infinite dimensional, so the
inner product notation xT z should be written differently, but this small abuse of
notation does not affect the problem.

5. A simple duality example. Consider the optimization problem

minimize x2 + 1
subject to (x− 2)(x− 4) ≤ 0,

with variable x ∈ R.

(a) Analysis of primal problem. Give the feasible set, the optimal value, and the optimal
solution.

(b) Lagrangian and dual function. Plot the objective x2 + 1 versus x. On the same plot,
show the feasible set, optimal point and value, and plot the Lagrangian L(x, λ) versus
x for a few positive values of λ. Verify the lower bound property (p⋆ ≥ infx L(x, λ) for
λ ≥ 0). Derive and sketch the Lagrange dual function g.

(c) Lagrange dual problem. State the dual problem, and verify that it is a concave max-
imization problem. Find the dual optimal value and dual optimal solution λ⋆. Does
strong duality hold?

6. Kernel logistic regression. Models other than the support vector machine can be kernelized,
i.e., put in a form where the kernel trick can be used. Recall that a (regularized) logistic
regression model can be fit by solving the convex optimization problem

minimize −
∑N

i=1
log p(yi |xi;w) + (λ/2)‖w‖22 (4)

with variable w ∈ Rn, where p(y = 1 |x) = s(wTx) and s(z) = 1/(1+exp(−z)) is the sigmoid
function. (Here, the inputs xi are assumed to already contain a constant term and so the
separate intercept parameter b is omitted.)

(a) Consider a modified version of logistic regression in which the labels are {−1, 1} instead
of {0, 1}, and the conditional probability of the label is given by

p(y = k |x;w) = s(ywTx)
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for k ∈ {−1, 1}. Show that this implies

p(y = 1 |x) = s(wTx), p(y = −1 |x) = 1− s(wTx).

(b) Show that (4) is equivalent to the problem

minimize (λ/2)‖w‖22 +
∑N

i=1
log(1 + exp(−ui))

subject to ui = yiw
Txi, i = 1, . . . , N,

(5)

with variables w ∈ Rn, u ∈ RN . It should be evident that (5) is convex.

(c) The Lagrangian for (5) is

L(w, u, α) =
λ

2
‖w‖22 +

N
∑

i=1

log(1 + e−ui) +
N
∑

i=1

αi(ui − yiw
Txi),

with dual variables α ∈ RN . Find an expression for the ŵ minimizing L for a fixed
value of α; the expression will be in terms of α. Explain why this expression implies
that 0 � α � 1.

(d) Show that the dual objective is given by

g(α) = −

N
∑

i=1

(αi logαi + (1− αi) log(1− αi))−
1

2λ

N
∑

i,j=1

αiαjyiyjx
T
i xj .

(e) Given this dual formulation of the (regularized) logistic regression problem, explain how
to kernelize logistic regression. In particular, describe how to train the model and how
to efficiently compute p(y = 1 |xnew) for a new test input xnew.

7. Constructing kernels. Kernelized algorithms let us significantly increase the power of a rel-
atively simple method by allowing it to implicitly work in a high-dimensional space, but a
main question is then how to construct kernels for a given problem.

We have seen two main ways to construct kernels: (a) explicitly define a feature map ϕ, and
(b) use Mercer’s theorem. This exercise will build on these by allowing us to construct new
kernels from existing ones.

For each of the functionsK below, state whether or not it is a kernel. If so, prove it; otherwise,
provide a counterexample.

(a) K(x, z) = K1(x, z) +K2(x, z), where K1,K2 are kernels on Rn.

(b) K(x, z) = K1(x, z)−K2(x, z).

(c) K(x, z) = αK1(x, z), where α > 0.

(d) K(x, z) = −αK1(x, z).

(e) K(x, z) = K1(x, z)K2(x, z).

(f) K(x, z) = f(x)f(z), where f : Rn → R. What are the implications if f is a density?

(g) K(x, z) = K3(T (x), T (z)), where T : Rn → Rd.

(h) K(x, z) = p(K1(x, z)), where p is a polynomial with positive coefficients.
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