Errata for 'Proximal Algorithms'

Neal Parikh Stephen Boyd

July 13, 2014

1. On page 156 (§4.4.1), there is a typo in the fifth equation on the page, a z-update. The penalty term should be

$$
(\rho / 2)\left\|x^{k+1}-z+(1 / \rho) y^{k}\right\|_{2}^{2}
$$

i.e., there is a sign error on the last term. (Thanks to Panagiotis Patrinos.)
2. On page 166, there is a sign error in Equation 5.9. The x-update should be

$$
x_{i}^{k+1}:=\operatorname{prox}_{f_{i}}\left(\bar{x}_{i}^{k}-u_{i}^{k}\right),
$$

just as in Equation 5.6. (Thanks to Thomas Möllenhoff.)
3. On page 176 , the last term in the Hessian of f should be $\operatorname{diag}\left(\phi_{i}^{\prime \prime}\left(x_{i}\right)\right)$ rather than what is written there, since it should involve the second derivatives of the ϕ_{i} functions. (Thanks to Zoltan Szabo.)
4. On page 178 (§6.1.4), the paper states the following: "In general, when v is not in $\operatorname{dom} f, \operatorname{prox}_{\lambda f}(v)=$ $\Pi_{\text {dom } f}(v) . "$ This is false. For example, if

$$
f(x)= \begin{cases}(x-1)^{2} & x \geq 0 \\ \infty & x<0\end{cases}
$$

then $\operatorname{prox}_{f}(-1) \neq 0$. The method can be adjusted accordingly. (Thanks to Petter Strandmark.)
5. On page 180 ($\S 6.2 .1$), Equation 6.5 erroneously refers to λ^{\star} and η^{\star} when the dual optimal points should be ν^{\star} and η^{\star} to be consistent with the definition of the dual function. Equation 6.5 should instead be

$$
x^{\star}=v-A^{T} \nu^{\star}-C^{T} \eta^{\star} .
$$

(Thanks to Zoltan Szabo.)
6. On page 181 ($\S 6.2 .1$), the definition of the dual QP in terms of the Gram matrix G should be

$$
\begin{array}{ll}
\operatorname{minimize} & (-1 / 2)(\nu, \eta)^{T}\left(G G^{T}\right)(\nu, \eta)+(G v-(b, d))^{T}(\nu, \eta) \\
\text { subject to } & \eta \geq 0
\end{array}
$$

to be consistent with the dual problem at the top of page 180. Explicitly, there is a missing factor of $(-1 / 2)$ in the first term and the second term should have $G v$ replaced with $G v-(b, d)$. (Thanks to Zoltan Szabo.)
7. On page 183 , the example in the last paragraph of $\S 6.3$ should state that if $-v \in \mathcal{K}^{*}$, then $\Pi_{\mathcal{K}}(v)=0$; there is a missing negative sign in the condition. In words, the negative dual cone gets projected to zero. (Thanks to Zoltan Szabo.)
8. On page 186 , the lower bound of the initial search interval for bisection should be $\min _{i} v_{i}-(\lambda / n)$, not $\min _{i} v_{i}-(1 / n)$. (Thanks to Zoltan Szabo.)
9. On page 194 (§6.7.4), Equation 6.14 should read

$$
\Pi_{\mathcal{B}}(A)=\sum_{i=1}^{n} \Pi_{[-1,1]}\left(d_{i}\right) u_{i} u_{i}^{T}
$$

because the eigenvalues d_{i} of A could be negative, and they are being projected onto the ℓ_{∞} ball $[-1,1]$. Equation 6.14 as stated in the paper is inconsistent with the English description in the text and the rest of the section. (Thanks to Zoltan Szabo.)

