
A Recommendation Engine to Aid in
Identifying Crime Patterns

Alex Chohlas-Wood* and E.S. Levine*

*New York City Police Department, New York, NY 10038

Police investigators are routinely asked to search for and iden-
tify groups of related crimes, known as patterns. Investigators
have historically built patterns with a process that is manual,
time-consuming, memory based, and liable to inefficiency. To
improve this process, we developed a set of three supervised
machine learning models, which we called Patternizr, to help
identify related burglaries, robberies, and grand larcenies. Pat-
ternizr was trained on ten years of manually identified patterns.
Problematic administrative boundaries and sensitive suspect at-
tributes were hidden from the models. In tests on historical ex-
amples from New York City, the models perfectly rebuild ap-
proximately one-third of test patterns and at least partially re-
build approximately four-fifths of these test patterns. The mod-
els have been deployed to every uniformed member of the New
York City Police Department through a custom software ap-
plication, allowing investigators to prioritize crimes for review
when building a pattern. They are used by a team of civilian
crime analysts to discover new crime patterns and aid in mak-
ing arrests.

law enforcement | pattern recognition | machine learning | decision support
Correspondence: alexcw@stanford.edu, evan.levine@nypd.org

Introduction
Predictive policing can be defined as “the application of an-
alytical techniques—particularly quantitative techniques—
to identify likely targets for police intervention and pre-
vent crime or solve past crime by making statistical predic-
tions” (1). These techniques have come into increasingly
common usage as the amount of data available to law en-
forcement has grown (2, 3). Law enforcement agencies have
a tradition of using quantitative techniques to inform opera-
tions. Pioneering techniques in queuing (4, 5), in resource
allocation via hotspots (6), and in organizational manage-
ment (7) have been developed and implemented in police de-
partments worldwide. Continuing this tradition, a wide vari-
ety of predictive policing applications are in use by law en-
forcement agencies today, including algorithms that forecast
geographies at high risk of imminent crime (8, 9), predict re-
cidivism to aid in sentencing (10), or identify individuals at
risk for involvement in future gun violence (11). Advanced
analytics have also been used in police management, such as
optimizing the recruitment process for police applicants (12),
tracking the locations of officers on patrol (13), and identify-
ing officers in need of counseling or training (14).

This is an electronic reprint of the original article published by the IN-
FORMS Journal on Applied Analytics, 2019. This reprint differs from the
original in pagination and typographic detail.

©2019 City of New York.

One topic that has received less attention is the process
of identifying crime patterns. Researchers have outlined
potential approaches for using advanced analytics to aid in
the identification of crime patterns by connecting similar
crimes (15, 16), as analogous recommendation engines have
been the subject of much attention in other domains (17);
however, we know of no previous production deployment of
these algorithms in a law enforcement environment. To aid
New York City Police Department (NYPD) investigators in
identifying groups of related crimes, we have designed and
implemented a recommendation algorithm, which we call
Patternizr.

In 2016, people in New York City reported approximately
13,000 burglaries, more than 15,000 robberies, and over
44,000 grand larcenies (18). Evidence from the legal sys-
tem and criminological research indicates that many of these
crimes were committed by serial offenders (19). A series of
such crimes—committed by the same criminal—is known as
a pattern. The crimes in a pattern may be nearby in space,
similar in times and days of occurrence, and (or) alike in
method (also known as the modus operandi, or M.O.). Once
a pattern has been identified, it is possible for police to use
evidence from related crimes to more easily identify and ap-
prehend the perpetrator. Additionally, if police investigators
have connected an arrest to multiple crimes as part of a pat-
tern, they can close more investigations and prosecution can
proceed with more accurate charges.

However, identifying patterns is not an easy task. Inves-
tigators at many police departments follow a manual and
memory-based pattern identification process that has not
changed much from the days of paper records (20). While
reading through a crime report, known as a complaint, an in-
vestigator attempts to recall past crimes with similar char-
acteristics. If two complaints seem to the investigator to
be similar and could plausibly be committed by the same
individual, the investigator links the two complaints into a
pattern. Because investigators focus most of their limited
time on recent complaints in their own precincts, patterns
that occur across significant distances (particularly across
multiple precincts) or over long periods are especially dif-
ficult to identify. Although modern technology has aug-
mented this memory-based process with simple search en-
gines (21), these searches are typically done using exact cat-
egorical matches, rather than searching for broader similarity
across many disparate crime characteristics. Collectively, the
NYPD still spends hundreds of thousands of hours each year
searching for patterns using these methods.

Chohlas-Wood and Levine | March 29, 2019 | 1

https://doi.org/10.1287/inte.2019.0985
https://doi.org/10.1287/inte.2019.0985

Solution Design

Patternizr is a decision support tool and recommendation en-
gine that consists of a set of machine learning models to make
this search process more efficient and effective. The purpose
of Patternizr is to take a “seed” complaint, chosen by the an-
alyst, and compare this seed against the hundreds of thou-
sands of recorded crimes in NYPD’s crime database. With
each comparison between a crime and the seed, Patternizr
generates a “similarity score” that quantifies the likelihood
that the pair of crimes are in a pattern together. Once all sim-
ilarity scores have been generated, Patternizr ranks the pairs
in descending order by similarity score and returns a list for
the analyst to review. The complaints most likely to be in a
pattern with the seed complaint appear at the top of the list.
After reviewing these ranked results, the analyst can decide
which complaints should be grouped together into a pattern.

The models that comprise Patternizr are supervised ma-
chine learning classifiers; that is, they are statistical models
that learn from historical examples where classifications are
known and are then used to predict the classification for sam-
ples for which the classifications are unknown. In the case
of Patternizr, each example is a pair of crimes, and the clas-
sification is whether the two crimes are in a pattern together.
The collection of examples used for training is known as a
training set. Each model learns to perform classification by
incorporating information from a set of attributes, known as
features, which are selected to represent relevant characteris-
tics about each pair of crimes. Much of the work of building
a machine learning model is in identifying and representing
features to enable the model to make accurate classifications.
We call this step feature extraction. For Patternizr, as we dis-
cuss in the Sample Selection section, we chose samples for
the training set in such a way that we improved information
gain. Finally, we trained a specific type of machine learning
model—a random forest—using standard techniques.

We used a separate model for each of three different crime
types (burglaries, robberies, and grand larcenies) because
these crime types have a sufficient corpus of prior manually
identified patterns for use as training examples. This corpus
consists of approximately 10,000 patterns between 2006 and
2015 from each crime type. In addition to manually iden-
tified official patterns, a portion of this corpus is built from
complaint records where the same individual was arrested
for multiple crimes of the same type within a span of two
days. When these arrest groupings are included with man-
ually identified patterns, each crime type has approximately
30,000 complaints, which are included in a pattern—a small
portion of the 200,000–400,000 complaints for each crime
type recorded over the same ten-year period. In this section,
we describe how we constructed the features used in each
of the three machine learning models; then discuss how we
trained the models that were put into production. Figure 1 de-
picts the process by which these models were produced. Al-
though we constructed separate models for each of the three
crime types, the models rely on a nearly identical set of fea-
tures and are trained in the same way.

Fig. 1. Process overview for training Patternizr. Historical pattern data are used to
choose a sample of complaints. That sample and any corresponding arrests are
run through the similarity calculations to build features for learning. The random
forest model takes those features and uses the historical patterns for training to
produce a production model.

Feature Extraction

We construct the features on which each model relies from
the information contained in complaints. A complaint con-
tains a mix of unstructured text describing details of the crime
and structured fields about the crime, including the date and
time (which can be a range if the precise time of occurrence
is unknown), location, crime subcategory, M.O., and suspect
information. We use this information to calculate the five
types of crime-to-crime similarities used as features by Patt-
ernizr: location, date-time, categorical, suspect, and unstruc-
tured text.

We selected these similarities by discussing pattern dis-
covery with NYPD investigatory and enforcement personnel
with many years of experience manually building patterns.
They described the data sources they have used to identify
patterns, as well as specific pieces of information that led
them to believe that two complaints were connected. Ad-
ditionally, they discussed many specific patterns they had
identified and the unique set of circumstances that connected
each group of crimes. In the course of these discussions, we
also learned much about the inefficiencies that are inherent in
manual pattern creation, as we detail in the introduction, and
that could be reduced with the help of an automated tool.

Because Patternizr predicts the likelihood of a complaint
pair belonging together in a pattern, the set of features read
by the model (Table 1), which we call K, is derived from
pairwise comparisons between crimes i and j. Each of these
pairwise comparisons, which we call Xk, is a similarity cal-
culation between a selected attribute k of the pair’s complaint
reports. The mathematical details of our more complicated
features can be found in Appendix A.

For date-time, location, and categorical attributes, we used
similarity computation methods previously described in re-
lated work on Cambridge Police Department data (15). How-
ever, we modified that formulation by excluding categori-
cal information corresponding to administrative geographies
(i.e., a feature noting that the pair exists in the same precinct)
to encourage matches across such boundaries. Date-time and
location attributes are useful features because detectives’ ex-
periences have shown that complaints in patterns are likely to
happen nearby in space and time. Categorical attributes are
important at identifying a consistent M.O. We also included
metrics to compare the descriptions of groups of suspects

2 Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns

No. Attribute Type Similarity measure
1 Location (XY) Location Distance apart (Euclidean)
2 Location (XY) Location Distance apart (exponential)
3 Location (XY) Location Binned midpoint (longitudinal)
4 Location (XY) Location Binned midpoint (latitudinal)
5 Location (XY) Location Location frequency (sum)
6 Location (XY) Location Location frequency (maximum)
7 Location (XY) Location Location frequency (minimum)
8 Location (XY) Location Location frequency (product)
9 Date-time of occurrence Date-time Time of day similarity
10 Date-time of occurrence Date-time Time of week similarity
11 Date-time of occurrence Date-time Size of occurrence windows (larger)
12 Date-time of occurrence Date-time Size of occurrence windows (smaller)
13 Date-time of occurrence Date-time Size of occurrence windows (difference)
14 Date-time of occurrence Date-time Days apart
15 Date-time of arrest Date-time Days between arrest and crime
16 Premise type Categorical Categorical similarity
17 Crime classification Categorical Categorical similarity
18 M.O. categorical fields Categorical Categorical similarity
19 M.O. weapon Categorical Categorical similarity
20 Location details Categorical Categorical similarity
21 Firearm discharged Categorical Categorical similarity
22 Crime attempted or completed Categorical Categorical similarity
23 Domestic crime indicator Categorical Categorical similarity
24 Medical assistance required Categorical Categorical similarity
25 Suspect height(s) Suspect Group similarity (continuous)
26 Suspect weight(s) Suspect Group similarity (continuous)
27 Suspect force used Suspect Group similarity (categorical)
28 Suspect count Suspect Difference
29 M.O. victim count Suspect Difference
30 Complaint narrative (burg only) Unstructured text Average similarity
31 Complaint narrative (burg only) Unstructured text Sum of similarity
32 Complaint narrative (rob and GL) Unstructured text Cosine similarity
33 M.O. suspect statement (rob and GL) Unstructured text Cosine similarity
34 M.O. victim actions (rob and GL) Unstructured text Cosine similarity
35 M.O. method of flight (rob and GL) Unstructured text Cosine similarity
36 Premise name (rob and GL) Unstructured text Cosine similarity
37 Property taken (rob and GL) Unstructured text Cosine similarity
38 All unstructured text Unstructured text Cosine similarity
39 Complaint narrative Unstructured text Rare-word matches

Table 1. List of the features included in Patternizr. These features are indexed by the variable k in the text. We use the following abbreviations: “burg” represents burglary,
“rob” represents robbery, and “GL” represents grand larceny.

(e.g., the count of suspects who have committed a crime);
however, we excluded sensitive suspect attributes (e.g., race).
Suspect descriptions are particularly useful in identifying pat-
terns of violent crimes such as robberies because, in such
crimes, the victim physically encounters the suspect. Finally,
we added features for the similarity of unstructured text nar-
ratives, including the cosine similarity of vector representa-
tions of the descriptions, as well as the number of rare-word
matches between two descriptions. These features were in-

cluded as a reflection of the central role that unstructured text
plays in the manual identification of patterns.

Many features represent similar, but distinct, representa-
tions of the underlying data. This allows the algorithm to
leverage as much available information as possible. We con-
structed three slightly different feature sets for each crime
type, based on the characteristics relevant, available, and
found to be important for that crime type. For example, the
M.O. categorical field for “method of entry” is relevant to
burglaries but not for robberies or grand larcenies.

Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns 3

Location Features. We incorporate eight similarities (la-
beled with indices k = 1 through k = 8) derived from loca-
tion information, including a strict Euclidean distance d (in
feet) between the crime pair and an exponential factor ed.
We also include two location features corresponding to lon-
gitude and latitude but binned to very coarse squares (over
nine miles on a side, for a total of roughly 11 boxes possi-
ble across the geography of New York City) to minimize the
possibility that higher-resolution geographies could be used
by the model as a proxy variable for sensitive attributes (such
as race). For each pair of crimes, we note which bin contains
the pair’s midpoint and include this as a feature. We also use
a two-dimensional location frequency distribution calculated
with kernel density estimation (KDE) (22), which represents
a heatmap of where crime is most (and least) common in the
city. For each pair, we add a feature for the sum, maximum,
minimum, and product of these KDE values, providing the
model with a range of information on how common the loca-
tions were for both crimes.

Date-Time Features. Seven separate similarities (k = 9
through k = 15) depend on the date-time attributes of the two
complaints. The time-of-day similarity measure, which com-
pares the time of day of the two crimes’ occurrences, is drawn
directly from Wang et al. (15). Following their approach, we
calculate the frequency distribution of occurrence times for
each crime type using KDE. Then, for each pair, we weight
the difference between occurrence times by the frequency of
those occurrence times. Crimes that occur close in time to
each other, and at rare times, will have a low measure, in-
dicating greater similarity between crime times. Crimes that
occur far apart in time, and during common times, will have
a high measure, indicating lower similarity between crime
times. Alternatively, crimes that are a certain distance apart
in time but occur during rare times will be more similar than
crimes that are the same distance apart in time but occur
during common times. This calculation can also be applied
to occurrence times specified over an occurrence window—
typical for crimes such as burglaries where the victim often
is not present to witness the crime and therefore knows only
that the crime happened within some time span. Comparisons
across occurrence windows are made by dividing the window
evenly into ten points and averaging similarities across all ten
points. We applied the same process to time-of-week simi-
larities. In addition, we included features for the duration of
the larger and smaller occurrence windows from the pair of
crimes, as well as the difference in size of the two occurrence
windows. We included a simple feature—days apart—that
we calculated between the midpoints of the time ranges if
the occurrence time was over a range. Finally, we included
a feature for the time between an arrest associated with the
earlier crime and the occurrence of the later crime so that the
model could have information about whether a criminal was
potentially incarcerated.

Categorical Features. Much of the information in a com-
plaint is in categorical form, including premise type, crime
classification, the M.O. itself, weapon type, and details about

the crime’s location. Other information is stored in categori-
cal fields that have yes/no/unknown structures; examples in-
clude whether a firearm was discharged during the crime,
whether the crime was attempted or completed, whether
someone required medical assistance, and whether the crime
was domestic in nature. For all our categorical features
(k = 16 through k = 24), we incorporate a simplified version
of Goodall’s similarity measure (23), identical to that used by
Wang et al. (15). This measure accounts for the frequency of
categorical values, causing two records that match on a rare
value to be rated as more similar than two records that match
on a common value. For categorical values that may take
on multiple values for a single crime (e.g., multiple weapon
types may be associated with a single robbery), possible val-
ues are encoded as dummy variables (22) before the categor-
ical similarity calculation. In addition, many categories are
too fine grained to be useful, because Goodall’s simplified
similarity measure is only nonzero when categories match
exactly on both complaints. For example, NYPD crime clas-
sifications for burglaries include three separate categories for
residential burglary, even though a perpetrator with the same
M.O. may plausibly commit crimes across all three types.
To address this issue, we asked uniformed police experts to
group the existing classification into broader categories us-
ing domain knowledge. We included both the ungrouped and
grouped crime classification similarities as features for the
algorithm.

Suspect Features. We chose to include only nonsensitive
suspect attributes, including height, weight, force used, and
count of suspects, as suspect features for Patternizr. Suspect-
attribute comparison differs from categorical comparison be-
cause it is often a many-to-many comparison for a crime pair.
It is generally not possible to know from two lists of suspects
which descriptions correspond to the same individual; there-
fore, comparisons must be made between all possible pairs of
individuals (with each list providing one of the pair). For ex-
ample, for the height and weight continuous variables (k = 25
and k = 26), we calculated the minimum difference between
each possible pair of suspect descriptions and then divided
the sum of differences by the quantity of suspects. For the
categorical feature of force used (i.e., whether the suspect
threatened to use force, or actually used force, in the com-
mission of a robbery), we counted and tabulated the number
of matches between possible suspect pairs (k = 27) in a sim-
ilar fashion. We also included the difference in suspect count
and victim count (which is a characteristic of the M.O.) as
features (k = 28 and k = 29).

Unstructured Text Features. We also created a number of
unstructured text features, including comparisons of the com-
plaint text narrative, which plays a central role in the manual
identification of patterns. Unstructured text also comprises
the suspect’s statements, victim actions, method of flight,
premise name, and property taken. For burglaries, we cal-
culate a word-by-word score identical to the categorical sim-
ilarities, but on a word-by-word basis rather than attribute
basis, for words that match between the narratives on both

4 Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns

complaints. We then provide an average and sum of these
similarities (k = 30 and k = 31).

For robberies and grand larcenies, we use a more advanced
method on other unstructured fields in addition to the nar-
ratives. We calculate the term-frequency/inverse-document
frequency (TF/IDF) (24) vector, representing the presence
and importance of the set of words that comprise each un-
structured text. We compute a cosine similarity between the
pair of TF/IDF vectors for each unstructured text attribute
(labeled with indices k = 32 through k = 37).

We also combine all unstructured text from each complaint
and treat it as a separate unstructured text attribute; this per-
mits information that appears fragmented across different
narratives to be compared at once across all possible sources.
For this combined narrative, we calculate the cosine similar-
ity (k = 38) and also count the number of rare words that did
not appear in the training corpus but do appear in both com-
plaints, and we include that count as a feature (k = 39). These
unusual words may indicate the presence of a consistent and
unusual M.O.

Sample Selection
A very small proportion of all possible crime pairs (about
8×10−8, 3×10−8, and 9×10−9 of possible burglary, rob-
bery, and grand larceny pairs, respectively) are together in
manually identified patterns. We refer to these crime pairs as
positive pairs. To preserve maximum information gain from
the corpus of patterns while also permitting model training
within memory constraints, we included all positive pairs in
the training set and performed down-sampling on the set of
possible negative pairs.

Purely random sampling of negative pairs would largely
consist of pairs that are far apart in space and time, encourag-
ing the model to identify positives based solely on proximity
in those dimensions. To counteract this effect, we sampled
nearby negative pairs at a higher rate than distant negative
pairs. We paired every pattern crime with a random sample
of 2% of all negative examples within 3,500 feet and an ad-
ditional random sample of 0.1% of all crimes within 80 days
of the crime’s midpoint in time. These were sampled uni-
formly: all negative examples within 3,500 feet or within 80
days of the crime’s midpoint in time were equally likely to be
selected. We repeatedly tested different thresholds until mod-
els trained on these data rated nonspatial or nontemporal fea-
tures roughly as important as distance and time apart (as mea-
sured by feature importances). Finally, a substantial portion
of distant negative pairs that included one crime known to be
part of a pattern was also selected at random—approximately

20 times the volume of already selected positive and nearby
pairs for that crime.

We subsequently uniformly sampled this set to fit in mem-
ory for model training. We trained the model for each crime
type on 20–32 million pairs of crimes. For burglaries, rob-
beries, and grand larcenies, 0.2%, 0.08%, and 0.06% of this
reduced set of pairs were positive, respectively.

Model Training
For each of the three crime types, we relied on a random for-
est model to calculate an overall similarity score between two
crimes. We chose a random forest model for several rea-
sons. First, tree-based classification algorithms are able to
learn interactions between features, which is important when
considering how separate crime subtypes could exhibit dif-
ferent similarity structures. For example, grand larceny pick-
pocketing patterns may generally occur much closer in space
(e.g., on a specific street corner) when compared with grand
larceny shoplifting patterns, which may generally happen
across the city. Second, random forests have demonstrated
an ability to achieve impressive performance while avoiding
overfitting (25). Third, random forests are implemented in
many standard machine learning libraries, can be trained and
executed in parallel, and do not require graphics processing
units to execute. Finally, similar to many other classification
algorithms, random forests generate a “score”; in Patternizr’s
case, this represents the confidence that the pair belongs to-
gether in a pattern. These similarity scores are scaled be-
tween 0 and 1; therefore, they can be naturally represented to
an investigator in the form of a percentage.

We used the standard implementation of the random for-
est algorithm in the Python library scikit-learn (26). Each
random forest model is an ensemble of hundreds of decision
trees that are trained on the calculated features and responses.
We trained each individual tree on an independently boot-
strapped sample of the training set, with a randomized por-
tion of the full set of features K. We describe the mathemat-
ical details of how we trained the trees in Appendix B.

Each random forest model also has a collection of settings,
which are known as hyperparameters, that specify model
structure and operation. We optimized several hyperparam-
eters for the random forest model, including the size of the
randomized subset of features and the maximum allowed tree
depth. We used a cross-validated randomized hyperparame-
ter search (27), which repeatedly selects a random combina-
tion of hyperparameters from a prespecified distribution of
values and then tests the performance of this combination on
several subsets of the data, preventing overfitting to any par-

Algorithm Completely rebuilt
patterns (no.)

Completely rebuilt
patterns (%)

Patterns with match
in top 10 (no.)

Patterns with match
in top 10 (%)

Burglary 55 (43–67) 37% (29%-45%) 123 (114–132) 82% (76%-88%)
Robbery 39 (29–49) 26% (19%-33%) 117 (107–126) 78% (71%-84%)
Grand larceny 41 (30–51) 27% (20%-34%) 114 (103–124) 76% (69%-83%)

Table 2. Accuracy of Patternizr on 150 test patterns. The average performance is listed first, followed by the 95% bootstrapped confidence interval of the performance in
parentheses.

Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns 5

Fig. 2. Performance of Patternizr on 150 test patterns. Each position on the x axis corresponds to a test pattern, and each dot corresponds to the ranking of a crime in that
pattern. Patterns are ordered left to right by the average precision score for that pattern as a visual aid. Patternizr did best on the patterns that appear to the left side of each
chart. Dashed lines indicate the proportion of test patterns with complete reconstruction (left of the vertical red line) and the patterns with a match in the top ten rankings
(under the horizontal orange line). Roughly one-third of the test patterns are completely reconstructed (as we also detail in Table 2); that is, no complaints outside of the
pattern are ranked higher than a complaint included in the pattern, and roughly four-fifths of the test patterns have at least one of the complaints in the pattern ranked in the
top ten.

ticular subset. For each crime type, we trained one random
forest model with up to 220 trees using the generated features
and tuned hyperparameters.

We set our hyperparameter search to optimize hyperparam-
eters for the best possible average precision (28)—an evalu-
ation metric that gauges whether desired matches are ranked
highly in a query. In Patternizr’s case, the query is the list
of complaints returned by Patternizr when the user chooses a
seed. Average precision relies on the precision metric, which
measures the proportion of a predicted positive class that is
actually positive. For Patternizr, precision is the percentage
of suggested matches that are actually in a pattern with the
seed. Each true match in Patternizr’s ranked list can be rep-
resented by the precision at that rank—the number of true
matches encountered so far divided by the rank (i.e., the total
number of suggested matches provided by Patternizr at that
point). Average precision, therefore, is simply an average of
these precisions for all true matches in the test pattern.

Performance

We tested the performance of Patternizr on a variety of ob-
jectives. First, we measured the proportion of test patterns
that were entirely or partially rebuilt by the models, even

though the models had not previously seen these test patterns.
Second, we constructed a benchmark model as a simplified
proxy for existing practice to test whether investigators us-
ing Patternizr would be more efficient than those using ex-
isting methods. Third, we examined the features each model
had isolated as most useful in identifying patterns and com-
pared those with investigators’ intuition. Finally, we mea-
sured whether Patternizr made consistent recommendations
across racial groups.

We validated all three Patternizr models on official patterns
that were not included in the training set. For each crime
type, we randomly chose 150 test patterns and randomly se-
lected a seed from each pattern. We then noted the rankings
of the remaining pattern crimes as provided by Patternizr’s
similarity scores. We bootstrapped this process by randomly
selecting these 150 test patterns 1,000 times, which provided
reliable estimates and uncertainty bounds. Table 2 shows the
results from this analysis.

The algorithm completely rebuilt (i.e., ranked all in-pattern
pairs ahead of all nonrelated pairs) approximately one-third
of test patterns. Additionally, approximately four-fifths of
burglary, robbery, and grand larceny patterns had at least one
match in the top ten rankings out of the entire corpus of com-
plaints for that crime type. Figure 2 shows the rankings for all

Fig. 3. Peformance of Patternizr against a simple baseline. Each dot represents a pair of complaints, where one half of the pair is a seed from the test set and the other half
of the pair is another complaint in that pattern. Model performance is better than baseline performance for each pair of sample complaints that lies below the diagonal line;
that is, the algorithm gives a ranking closer to the top of the list than the baseline algorithm.

6 Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns

Fig. 4. Feature importances for Patternizr. Feature importance is one way to gauge the relative contribution of different features to the overall classification of a random
forest. Feature importances are calculated by measuring the Gini impurity reduction at each node at which that feature is used, weighing these reductions by the number of
samples that were routed to that node, and then averaging these calculations for each feature across all trees in the forest in which that feature is used.

test patterns. In reality, this performance is likely an under-
estimation, given that investigators have likely missed actual
matches in the historical corpus.

To test whether Patternizr improves investigator efficiency,
we built a simple baseline algorithm for comparison. The
baseline algorithm assumes that investigators examine com-
plaints nearest in time to the seed complaint first while al-
ways limiting themselves to complaints in the same precinct
as the chosen seed. This method provides a baseline ranked
list that we can compare with Patternizr’s ranked results. We
restricted the comparison with local patterns in the test set
because the baseline algorithm would perform poorly (and
unrealistically) on patterns that span multiple precincts. We
compare the ranking of that complaint with how it appears in
the ranked list generated by Patternizr for all the local pat-
terns in our test data set (Figure 3).

We found that for all three crime types, Patternizr is typ-
ically an improvement on the baseline algorithm; this esti-
mate is conservative because Patternizr is especially helpful
on patterns spanning multiple precincts.

In Figure 4, we show the top ten feature importances for
each model. The features for distance, days apart, and narra-
tive information play a top role in all three models. NYPD’s
pattern subject matter experts confirmed that these three fea-
tures contain key information for pattern creation. Other top
features include similarity between other unstructured text
fields and time-of-day and day-of-week similarity. None of
the top ten features for each crime type was particularly sur-

prising to our subject matter experts. Note that these calcula-
tions only measure importance; they do not indicate how pos-
itive or negative changes in the feature will affect the model
score.

It is important to measure whether the recommendations
that Patternizr makes are not only valuable but also fair, par-
ticularly given the growing concern that predictive policing
tools may perpetuate disparate impact (29–31). We intention-
ally designed the algorithm to minimize disparate impact on
any specific group. First, the algorithm is completely blind
to sensitive information about potential suspects, including
race and gender, which were not included as a similarity
feature for the predictive model. Second, we kept poten-
tial proxy variables for sensitive information—particularly
location—extremely coarse to ensure correlation with sensi-
tive attributes had a very low degree of certainty while retain-
ing some very general information about location. Finally,
and most important, several levels of expert human review
are still required to establish a pattern, minimizing the poten-
tial for a seemingly likely (but incorrect) recommendation to
result in any enforcement action.

To confirm that these precautions were effective, we tested
whether any of the three models recommended pairs with a
certain racial group at a different frequency than either ran-
dom pairing or existing identified patterns. We randomly se-
lected 5–10 million test pairs from each crime type and drew
1,000 bootstrapped samples from each of these samples to
estimate uncertainty (Figure 5).

Fig. 5. Proportion of pairs by race for random, historical pattern, and Patternizr-recommended pairs. Confidence intervals are calculated from the range of values that
appear in 1,000 bootstrapped samples. Racial categories correspond to the official descriptions listed on NYPD complaint forms. Notably, many types of grand larceny will
not contain suspect information because there were no witnesses to the crime, thus producing relatively higher levels of uncertainty for grand larceny than for the other two
crime types.

Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns 7

Fig. 6. Screenshot of Patternizr in the NYPD Domain Awareness System. The map of the seed and most similar complaints is in the left panel, the seed complaint is in the
middle panel, and the most similar complaints are in the right panel. Grey boxes obscure law enforcement sensitive and personally identifiable information.

For all three crime types, the proportion of Patternizr pairs
with a similarity score greater than 0.5, which included a sus-
pect description of any race, was either consistent within the
95% confidence limit or lower than a random sampling of
all pairs. That is, this analysis uncovered no evidence that
Patternizr recommends any suspect race at a higher rate than
exists with random pairing.

Implementation

We incorporated finalized models into the back end of the
department’s Domain Awareness System (DAS), a citywide
network of sensors, databases, devices, software, and infras-
tructure (9, 21). We processed all historical pairs of com-
plaints in parallel in the cloud, against ten years of records
for burglaries and robberies, and against three years of grand
larcenies. This historical load took 19.4 days on approxi-
mately 1,600 cores. For new and revised complaints, simi-
larity scores are calculated and updated three times each day.
Each new or revised crime is scored against the entire corpus
of crimes before it is incorporated into DAS for querying by
users throughout the department.

Officers and analysts can access Patternizr through the cus-
tom software application, which is a part of DAS on NYPD
desktop computers. To use Patternizr, an investigator presses
a “Patternize” button on any seed complaint to retrieve all
available calculated similarity scores. Investigators are pre-
sented with a rank-ordered list of results, from most to least
similar to the seed, with ten results displayed at a time. For
each result, the distance, time apart, and algorithm-calculated
similarity score are all displayed. A map displays the seed

and similar results (Figure 6), and users can read a few impor-
tant details about each complaint before choosing to examine
the seed and result complaints side by side in full detail. The
use of a ranked list, as opposed to a similarity score threshold,
allows us to always display the most similar crimes; thus, the
analysts always have a starting point for their analysis.

The user interface gives investigators the ability to collab-
orate with the algorithm using their specialized expertise. If
an investigator has reason to believe that a certain M.O. is
particularly relevant for a given pattern (e.g., only burglar-
izing tools from construction sites), the investigator can ac-
tively filter and query the result list. A general text search,
and filters for distance, time apart, presence of arrest, and
premise type, are all available and may be used simultane-
ously. The remaining results are still sorted by Patternizr’s
similarity score. The filters do not reorder the results; they
only exclude crimes that do not meet the search criteria. In
this way, investigators can both search for a specific M.O.
and utilize the rank order of the results list to immediately
display the most similar results, given the manually specified
M.O. criteria.

After approximately two years of development, including
work on the algorithm, backend systems, and the user in-
terface, Patternizr was deployed to production in Decem-
ber 2016. In parallel, throughout 2017, the NYPD hired a
team of approximately 100 civilian analysts, deployed in the
field, to perform crime analysis. These new crime analysts
were trained to use Patternizr as part of their daily routine.
For example, a crime analyst assigned to a precinct typi-
cally reviews crimes that occurred in his or her precinct to
see whether they are part of a pattern. The uniformed offi-

8 Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns

cer that had been assigned this task before the crime analysts
were hired used manual methods to perform this review; this
review is now conducted using Patternizr.

Between January 2018 (with crime analysts at fully staffed
levels) to the time of this paper’s writing (July 2018), ap-
proximately 400 complaints per week were run through Pat-
ternizr, and this number is trending upward. This represents
approximately 30% of all the burglaries, robberies, and grand
larcenies recorded by the NYPD during that period. Approxi-
mately 80% of the usage comes from the new crime analysts,
with the remaining 20% coming from uniform officers per-
forming crime analysis and investigatory duties. Addition-
ally, crime analysts created more than 90 preliminary pat-
terns per week in the same period using Patternizr in DAS.
These patterns are considered preliminary because they have
not yet been reviewed and approved by the relevant special-
ist units; however, the volume of preliminary patterns cre-
ated with Patternizr demonstrates the value of the tool. De-
bra Piehl, the NYPD’s Senior Crime Analyst, says of the tool,
“Patternizr dramatically improves efficiency compared to tra-
ditional methods, and it still allows the analysts that work for
me to apply their own thinking and analysis. The science
doesn’t overwhelm the art” (32).

Crime analysts have also provided specific instances in
which official patterns were created because the Patternizr
algorithm recognized similarities between crimes that the an-
alysts would otherwise have found difficult to notice. For
example, one analyst was examining a recent robbery in her
precinct; the perpetrator was shoplifting power drills from
a commercial establishment and, when confronted, attacked
and injured an employee with a hypodermic needle. The an-
alyst ran the complaint through Patternizr, and the algorithm
returned an additional robbery in a distant precinct where
the perpetrator was shoplifting a drill and threatened an em-
ployee with a hypodermic needle. This robbery was likely
identified by the algorithm because of high similarity scores
for the time of occurrence, the robbery subtype (began as
shoplifting), the weapon used, and several matching words in
the narratives (e.g., drill, needle). The investigators combined
these two complaints into an official pattern, along with two
other larcenies committed by the same perpetrator, and the
pattern was then passed to the detective squad. The NYPD
conducted an investigation and arrested the perpetrator, who
later pled guilty to larceny and felony assault and is currently
awaiting sentencing.

A second example involves the discovery of a grand larceny
of unattended-property pattern. In this example, an analyst
was examining the theft of a watch from a locker at a hotel
gym in Midtown Manhattan in the late afternoon. The an-
alyst used Patternizr on this complaint and discovered three
other complaints with the same M.O.—jewelry and watches
were removed from a locker in a fitness facility in the late
afternoon or early evening in the same area. The algorithm
likely recognized similarities in the complaints’ times of oc-
currence, their geographic proximity, the property removed
(jewelry and watches), the premise types (gyms), and key
words in the narrative (e.g., locker). Two suspects were iden-

tified through the review of video footage, and the NYPD’s
investigation is ongoing.

The helpful feedback we have received from our users has
highlighted potential improvements to Patternizr. For exam-
ple, users have requested that the grand larceny algorithm
also calculate similarities to petit larceny complaints, which
differ from grand larcenies only in the value of the items
stolen. Users have also requested the ability to compare
across crime types, such as robberies and grand larcenies,
where the only difference is whether force was used. We
are considering adding this functionality when we deploy a
second version of the Patternizr algorithms.

Conclusion
Patternizr is a new, effective, and fair recommendation en-
gine deployed by the NYPD to help investigators group re-
lated crimes. To our knowledge, this is the first time such
an algorithm has been deployed to production in a law en-
forcement environment. It joins a growing list of machine
learning applications customized for public safety and for the
public sector in general. Patternizr is also one of a long line
of data-driven tools prototyped and developed at the NYPD,
including CompStat (7). These tools, when used properly, en-
courage precision policing approaches instead of widespread,
heavy-handed enforcement techniques and enable investiga-
tors to focus on the art of policing instead of rote and unin-
teresting work. We expect that other departments, and local
agencies in general, will continue this line of research by ex-
tracting similar value from existing government data.

Bibliography
1. Walt L Perry, Brian McInnis, Carter C Price, Susan C Smith, and John S Hollywood. Predic-

tive policing: The role of crime forecasting in law enforcement operations. Rand Corporation,
2013.

2. Andrew Guthrie Ferguson. The rise of big data policing: Surveillance, race, and the future
of law enforcement. NYU Press, 2017.

3. Greg Ridgeway. Policing in the era of big data. Annual Review of Criminology, 1:401–419,
2018.

4. Richard C Larson. Urban police patrol analysis, volume 28. MIT Press Cambridge, MA,
1972.

5. Linda V Green and Peter J Kolesar. Improving emergency responsiveness with manage-
ment science. Management Science, 50(8):1001–1014, 2004.

6. Jack Maple. The crime fighter: How you can make your community crime free. Broadway,
2000.

7. Vincent E Henry. The COMPSTAT paradigm: Management accountability in policing, busi-
ness, and the public sector. Looseleaf Law Publications, 2002.

8. George O Mohler, Martin B Short, Sean Malinowski, Mark Johnson, George E Tita, An-
drea L Bertozzi, and P Jeffrey Brantingham. Randomized controlled field trials of predictive
policing. Journal of the American statistical association, 110(512):1399–1411, 2015.

9. ES Levine, Jessica Tisch, Anthony Tasso, and Michael Joy. The New York City Police
Department’s Domain Awareness System. Interfaces, 47(1):70–84, 2017.

10. Richard Berk and Justin Bleich. Forecasts of violence to inform sentencing decisions. Jour-
nal of Quantitative Criminology, 30(1):79–96, 2014.

11. Jessica Saunders, Priscillia Hunt, and John S Hollywood. Predictions put into practice: a
quasi-experimental evaluation of Chicago’s predictive policing pilot. Journal of Experimental
Criminology, 12(3):347–371, 2016.

12. Nelson Lim, Carl Matthies, Brian Gifford, and Greg Ridgeway. To protect and to serve:
enhancing the efficiency of LAPD recruiting, volume 881. Rand Corporation, 2009.

13. David Weisburd, Elizabeth R Groff, Greg Jones, Breanne Cave, Karen L Amendola, Sue-
Ming Yang, and Rupert F Emison. The Dallas patrol management experiment: can AVL
technologies be used to harness unallocated patrol time for crime prevention? Journal of
Experimental Criminology, 11(3):367–391, 2015.

14. Jennifer Helsby, Samuel Carton, Kenneth Joseph, Ayesha Mahmud, Youngsoo Park, An-
drea Navarrete, Klaus Ackermann, Joe Walsh, Lauren Haynes, Crystal Cody, et al. Early
intervention systems: Predicting adverse interactions between police and the public. Crimi-
nal justice policy review, 29(2):190–209, 2018.

15. Tong Wang, Cynthia Rudin, Daniel Wagner, and Rich Sevieri. Learning to detect patterns
of crime. In Joint European conference on machine learning and knowledge discovery in
databases, pages 515–530. Springer, 2013.

Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns 9

16. Michael D Porter. A statistical approach to crime linkage. The American Statistician, 70(2):
152–165, 2016.

17. Robert M Bell and Yehuda Koren. Lessons from the Netflix prize challenge. SiGKDD Ex-
plorations, 9(2):75–79, 2007.

18. New York City Police Department. Citywide seven major felony offenses, 2000–2016, 2017.
Accessed: 2017-12-20. http://www1.nyc.gov/assets/nypd/downloads/pdf/
analysis_and_planning/seven-major-felony-offenses-2000-2016.

pdf.
19. Marvin E Wolfgang, Robert M Figlio, and Thorsten Sellin. Delinquency in a birth cohort.

University of Chicago Press, 1987.
20. Samantha L Gwinn, Christopher W Bruce, Steven R Hick, and Julie P Cooper. Exploring

crime analysis: Readings on essential skills. International Association of Crime Analysts,
2008.

21. ES Levine and JS Tisch. Analytics in action at the New York City Police Department’s
Counterterrorism Bureau. Military Operations Research, 19(4):5–14, 2014.

22. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:
prediction, inference and data mining. Springer-Verlag, New York, 2009.

23. Shyam Boriah, Varun Chandola, and Vipin Kumar. Similarity measures for categorical data:
A comparative evaluation. In Proceedings of the 2008 SIAM international conference on
data mining, pages 243–254. SIAM, 2008.

24. James H Martin and Daniel Jurafsky. Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition. Pear-
son/Prentice Hall Upper Saddle River, 2009.

25. Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
26. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct):
2825–2830, 2011.

27. James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

28. Christopher D Manning, Raghavan Prabhakar, and Schütze Hinrich. Introduction to infor-
mation retrieval. Cambridge University Press, 2008.

29. Kristian Lum and William Isaac. To predict and serve? Significance, 13(5):14–19, 2016.
30. Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic

decision making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages 797–806. ACM,
2017.

31. Andrew Guthrie Ferguson. Policing predictive policing. Wash. UL Rev., 94:1109, 2016.
32. Debra Piehl. Conversation with Evan Levine, June 22, 2018.
33. Daniel Jurafsky and James H Martin. Speech and language processing: An introduction

to speech recognition, computational linguistics and natural language processing. Upper
Saddle River, NJ: Prentice Hall, 2008.

Acknowledgements
The authors acknowledge the support of the men and women
of the New York City Police Department. In particular, the
authors thank Police Commissioner James P. O’Neill, the
former Police Commissioner William J. Bratton, Chief Lori
Pollock, Chief Dermot Shea, Deputy Chief Timothy McCor-
mack, Inspector Anthony Tasso, Deputy Inspector Brandon
del Pozo, Captain John Hall, Lt. Juan Duque, Lt. Phillip
McEneaney, Sgt. Christopher Bray, Sgt. Joseph Klub-
nick, Sgt. Sean McCarthy, Deputy Commissioner Jessica
Tisch, Assistant Commissioner Richard Schroeder, Assistant
Commissioner Ronald Wilhelmy, Director Martha Norrick,
Daniel Montiel, and Debra Piehl. Special thanks to Tong
Wang, Cynthia Rudin, Lt. Daniel Wagner, Theo Damoulas,
Ravi Shroff, and Joe McLaughlin.

Alex Chohlas-Wood’s current affiliation is Stanford Univer-
sity, Stanford, CA.

Appendix A: Feature Extraction
In this section, we provide the mathematical details involved
in our feature extraction process.

Categorical Attributes (k = 16 through k = 24). Define N
to be the number of documents in the corpus. First, we count
the number of documents in the corpus where attribute k has
the value x; we label these counts nk

x. Then,

Xk
i,j =

1−
∑

y s.t. nk
y≤nk

match

nk
y(nk

y−1)
N(N−1) ,

if documents i

and j match on
attribute k;

0, otherwise.

where the document count nk
match is defined as the number of

documents in the corpus that have the same value of attribute
k as documents i and j (23).

Suspect Height and Weight Attributes (k = 25 and k =
26). Call the minimal absolute difference between the value
of a continuous variable associated with suspect h of com-
plaint i to that of any suspect in complaint j ai,j,h. In math-
ematical form, using the weight attribute wi,h of suspect h in
complaint i as an example,

ai,j,h = min
f

[
|wi,h−wj,f |

]
,

where the minimum function runs over all suspects f in com-
plaint j. For example, if complaint 1 has suspects of weights
140 pounds (lbs), 180 lbs, and 220 lbs, and complaint 2 has
suspects of weights 150 lbs and 215 lbs, then a1,2,1 = 10 lbs,
a1,2,2 = 30 lbs, and a1,2,3 = 5 lbs. After calculating these
comparisons, we transform them into a similarity via

Xk
i,j =max

[
exp
(
−Pi

Pi∑
h=0

ai,j,h

Pi +Pj

)
,exp

(
−Pj

Pj∑
h=0

aj,i,h

Pi +Pj

)]
,

where Pi is the number of suspects for complaint i.

Suspect Force Used (k = 27). In this case, ai,j,h is just the
number of suspects in complaint j with the same value of the
categorical feature as suspect h in complaint i:

Xk=27
i,j = max

[
Pi

Pi∑
h=0

ai,j,h

Pi +Pj
,Pj

Pj∑
h=0

aj,i,h

Pi +Pj

]
.

Unstructured Text for Robberies and Grand Larcenies
(k = 32 Through k = 37). Treating each attribute k sepa-
rately, let the term frequency tfx,i be the count of word x in
document i, let the document frequency dfx be the number of
documents in the corpus containing word x, and let M be the
number of unique words in the corpus. Then, for each word
x, we calculate the inverse document frequency (33):

idfx = log
(N

dfx

)
+1.

The “+1” in this equation ensures that words that occur in
every document in the training corpus will not receive a zero
for inverse document frequency, which would preclude those
words from contributing to the eventual cosine similarity. For
each word x and document i, we calculate

10 Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns

http:// www1.nyc.gov/assets/nypd/downloads/pdf/analysis_and _planning/seven-major-felony-offenses-2000-2016.pdf
http:// www1.nyc.gov/assets/nypd/downloads/pdf/analysis_and _planning/seven-major-felony-offenses-2000-2016.pdf
http:// www1.nyc.gov/assets/nypd/downloads/pdf/analysis_and _planning/seven-major-felony-offenses-2000-2016.pdf

sx,i = tfx,i× idfx.

We then build the TF/IDF vector Si for each document i:

Si =
[
s0,i, ...,sM,i

]
.

Finally, for each pair of documents i and j, we calculate
the cosine similarity between the two TF/IDF vectors:

Xk
i,j = Si×Sj

SiSj
.

Appendix B: Random Forest Model Training
Trees are recursively built by identifying the best feature k
and split s at each node m, which minimize the Gini index,
a measure of node purity for the two descendent nodes (22).
Let R be the subset of feature values Xk left or right of the
split s, and let pq,m be the proportion of class q in node m.
Then,

Rleft(k,s) =
{

X|Xk ≤ s
}

,Rright(k,s) =
{

X|Xk > s
}

,

p̂q,m = 1
Nm

∑
xi∈Rm

I(yi = q),

where p̂q,m is the estimated sample proportion of class q in
left or right node m, Nm is the number of samples in node
m, and I(yi = q) is an indicator function that returns 1 when
sample i belongs to class q and returns 0 otherwise. We set
q = 1 (i.e., positive examples) and find the combination of k
and s that minimizes the Gini index as follows:

min
k,s

[
2
(

p̂1,left
(
1− p̂1,left

))
+2
(

p̂1,right
(
1− p̂1,right

))]
.

In addition, the group of features Km available for split-
ting at each node is chosen from a randomly selected subset
of all available features K. Some or all of these features may
be available for splitting at each node; from these available
features, the model selects the feature and split that best sep-
arate the child nodes into purer groups of either in-pattern or
unrelated crime pairs.

Chohlas-Wood and Levine | A Recommendation Engine for Crime Patterns 11

	Feature Extraction
	Random Forest Model Training

