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Machine learning

• intersection of computer science and statistics

• algorithms that learn from data and/or improve with experience

• roots in AI, but also used in huge variety of other domains

• draws on a number of mathematical areas, but rests in particular on
optimization theory and probability theory

• by framing various tasks that don’t appear to involve optimization in
that way, can bring the optimization toolbox to bear on a wider range of
problems in machine learning
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Regularized loss minimization

optimization-based framework for learning (parameter estimation)

minimize l(w) + λr(w)

• w ∈ Rn are the model parameters or weights

• l : Rn → R is a loss function measuring lack of fit on training data

• r : Rn → R is a regularizer measuring model complexity

• λ > 0 is a regularization parameter trading off between the two

if l and r are convex, problem can essentially be solved
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Regularized loss minimization

• many models fall under this framework, and may or may not be
probabilistic in nature

• ridge regression (Tikhonov regularized linear regression)

minimize ‖Xw − y‖22 + λ‖w‖22

• lasso (sparse linear regression)

minimize ‖Xw − y‖22 + λ‖w‖1

• support vector machine

minimize
∑N

i=1(1− yiwTxi)+ + λ‖w‖22
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Regularized loss minimization

• also subsumes common ways of learning probabilistic models

• maximum likelihood estimation of model p(x)

minimize −
∑N

i=1 log p(xi)

– could also model y |x and maximize
∑

i log p(yi |xi)
– includes, e.g., linear regression, generalized linear models, . . .

• maximum a posteriori (MAP) estimation (finding posterior mode)

minimize −
∑N

i=1 log p(xi |w)− log p(w)

– w ∼ Gaussian: Tikhonov regularization
– w ∼ Laplacian: `1/lasso regularization

6



Naive Bayes

• joint model that factorizes as

p(x, y) = p(y)

n∏
i=1

p(xi | y)

where xi are words in an email and y ∈ {spam, ham}

• need to estimate p(y = spam) and p(x = bank | y)

• maximum likelihood estimates have a trivial closed form solution, e.g.:

p̂(y = spam) =
# spam emails

total # emails

p̂(x = bank | spam) =
# times x = bank in spam mails

# words in spam emails
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Naive Bayes

• once parameters are fit, want to classify new example xnew

• compute label posterior

p(y = spam |xnew) =
p(xnew | spam) · p(spam)

p(xnew)

• pick whichever class has higher posterior probability

• in general, called a (probabilistic) inference problem
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Gaussian discriminant analysis

• assume data comes from generative model

y ∼ Bernoulli(φ)
x | y = 0 ∼ N(µ0,Σ)
x | y = 1 ∼ N(µ1,Σ)

i.e., data comes from one of two Gaussians chosen with a φ-coin flip

• estimate w = (φ, µk,Σ) by maximizing

`(w) = log

N∏
i=1

p(xi, yi;w)

=

N∑
i=1

log p(xi | yi;µ0, µ1,Σ) +

N∑
i=1

log p(yi;φ)
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Gaussian discriminant analysis
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Maximum likelihood estimation

maximum likelihood estimates of parameters given by

φ̂ =
1

N

N∑
i=1

[yi = 1]

µ̂k =

∑N
i=1[yi = k]xi∑N
i=1[yi = k]

Σ̂ =
1

N

N∑
i=1

(xi − µyi)(xi − µyi)
T

very natural interpretations:

• φ̂ is empirical proportion of positive label in D
• µ̂k is empirical average of xi with label k

• Σ̂ is empirical covariance, with variance measured to relevant mean
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Regularized loss minimization

• subsumes a very wide class of machine learning models

• generative/discriminative, probabilistic/non-probabilistic, ...

• sometimes problem can just be solved in closed form

• sometimes need sophisticated optimization algorithms like L-BFGS,
accelerated proximal gradient method, . . .

• calculations, or subsequent model use, may involve probability operations
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Mixture of Gaussians

• probabilistic model for clustering / density estimation

• consider data D = {x1, . . . , xN}

• generative model

z ∼ Multinomial(φ)

x | z = k ∼ N(µk,Σk)

• i.e., each xi generated by sampling a unobserved (hidden, latent)
zi ∈ [K] and then drawing xi from the corresponding Gaussian

• presence of these latent variables is the key new wrinkle

• model parameters are φ, µk, Σk
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Maximum likelihood estimation

• model parameters are φ, µk, Σk

• as usual, write down likelihood for w = (φ, µk,Σk)

`(w) =

N∑
i=1

log p(xi;w)

=

N∑
i=1

log

K∑
zi=1

p(xi | zi)p(zi)

• this function is nonconvex due to sum over values of zi

• can no longer easily solve the relevant optimization problem

15



Maximum likelihood estimation

• if zi were known, problem is easy and becomes

`(w) =

N∑
i=1

log p(xi | zi) +

N∑
i=1

log p(zi)

• maximizing with respect to φ, µ, Σ gives

φj =
1

N

N∑
i=1

[zi = j], µj =

∑N
i=1[zi = j]xi∑N
i=1[zi = j]

similar expression for Σ

• i.e., if zi were known, nearly identical to maximum likelihood estimates
in GDA (with zi’s as class labels)
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EM algorithm

• idea: iteratively guess the zi and then use formulas above:

1 E-step (probability): compute ρij = p(zi = j |xi; θ, µ,Σ)

2 M-step (optimization): use formulas above with ρij in place of [zi = j]

• E-step is an inference task: compute posterior probability of zi’s, given
data and current setting of parameters; ‘soft guesses’ for values of zi

• M-step is ‘regular’ maximum likelihood estimation, but there is
uncertainty around the value of the zi and that’s incorporated in
estimates

• yields a ‘soft’ version of k-means for this model
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Gaussian mixture model
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Gaussian mixture model
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Gaussian mixture model
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Gaussian mixture model
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Gaussian mixture model
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Gaussian mixture model
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EM algorithm

• in general, EM algorithm is standard approach to maximum likelihood
estimation with latent variable models

• data D = {x1, . . . , xN}

• want to fit model p(x, z) with z hidden

• likelihood is given by

`(w) =

N∑
i=1

log p(x;w) =

N∑
i=1

log
∑
z

p(x, z;w)

• often the case that maximum likelihood estimation of x would be easy if
z were known, so alternate the two steps
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EM algorithm

• iteratively lower bound `, then maximize that lower bound

• for each i, let qi be a distribution over z’s

N∑
i=1

log p(xi) =

N∑
i=1

log
∑
zi

p(xi, zi)

=

N∑
i=1

log
∑
zi

qi(zi)
p(xi, zi)

qi(zi)

≥
N∑
i=1

∑
zi

qi(zi) log
p(xi, zi)

qi(zi)

by Jensen’s inequality
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EM algorithm

• previous formula gives lower bound for any qi; ideally, have the lower
bound be tight (inequality holds with equality) for current value of w

• can show that this is the case when qi(zi) = p(zi |xi;w)

• E-step: lower bound ` via computing p(z |x)

• M-step: maximize this lower bound

Eq[log p(z, x;w)]

with respect to w
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EM algorithm

• previous motivation is as a ‘majorization-minimization’ algorithm

• can also be viewed as coordinate ascent on

F (q, w) =

N∑
i=1

∑
zi

qi(zi) log
p(xi, zi;w)

qi(zi)

• E-step: maximization with respect to q

• M-step: maximization with respect to w

• (note: can also be modified for MAP estimation)

• this perspective suggests/justifies many variations
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Inference

comes up in several places:

• using a trained model, e.g., to predict out-of-sample outcomes

• E-step of EM for MLE in partially observed model

• Bayesian learning (work with joint model p(x, z, w) with w random)

trivial in very simple cases, but expensive or intractable in complex models

(note: in some models, like hidden Markov models or Kalman filters,
inference can be carried out exactly but requires use of an algorithm)
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Variational inference

• let x be observed and z be hidden

• interested in computing the posterior distribution

p(z |x) =
p(z, x)

p(x)
=

p(z, x)∫
z
p(z, x)

• denominator (‘evidence’) is hard to compute and makes this difficult

• main idea is to pick family Q of distributions over the latent variables
indexed by variational parameters

q(z | ν)

and set ν via optimization to make q close to p(z |x)

• i.e., turn a probability problem into an optimization problem
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Variational inference

• recall following lower bound from EM

log p(x) ≥ L(q) = Eq[log p(x, z)]− Eq[log q(z)]

where RHS is called the evidence lower bound

• here, choose a parametrized family of distributions for q such that these
expectations are computable, then maximize lower bound L with respect
to these ‘variational parameters’

• can show that

KL(q(z) ‖ p(z |x)) + L(q) = log p(x)

• minimizing KL divergence is equivalent to maximizing L, plus obtain a
lower bound on log p(x)
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Mean field family

• in mean field variational inference, assume that the family factorizes

q(z1, . . . , zm) =

m∏
j=1

q(zj)

i.e., all variables are independent

• typically, this family does not contain the true posterior because the
hidden variables are dependent (and these dependencies are what make
the posterior difficult to work with)

• in ‘coordinate ascent variational inference’, iteratively optimize each
variational distribution while holding others fixed

• computations end up being simple when relevant parts of original model
are exponential family distributions
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Additional topics

• variational EM

– use variational inference to compute approximate posterior p(z |x) in
E-step, i.e., do inexact maximization of F with respect to q

• variational Bayes

– parameters w are random and model is p(x, z, w)

– use lower bound

log p(x) =

∫∫
p(x, z, w) dz dw ≥ E[log p(x, z, w)]− E[log q(z, w)]

with factorized approximation q(z, w) = q(z)q(w) and do alternating
maximization w.r.t. z, w

– yields EM-like algorithm sometimes called ‘variational Bayesian EM’

• stochastic variational inference: use stochastic optimization to scale
optimization carried out in variational inference
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Latent Dirichlet Allocation

• words are multinomial random variables w

• documents are sequences of N words w = (w1, . . . , wN )

• topics are (multinomial) distributions over words

• model document as a random mixture θ over K latent topics

• from an unlabeled collection of documents, infer

– per-word topic assignments in each document
– per-document topic proportions
– per-corpus topic distributions
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Latent Dirichlet Allocation
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Topic models

models for discovering thematic structure in document collections

joint distribution of topic mixture θ, topic distributions z, and words w is:

p(θ, z,w |α, β) = p(θ |α)

N∏
n=1

p(zn | θ)p(wn | zn, β)

goal: fit parameters and compute posterior p(θ, z |w, α, β)

36



A 100 topic model of Science 1980-2000

sound quantum brain computer ice
speech laser memory data climate

acoustic light human information ocean
language optical visual problem sea
sounds electron cognitive computers temperature

stars research materials fossil volcanic
universe national organic species years
galaxies science molecules evolution fig

astronomers new molecular birds deposits
star funding polymer evolutionary rocks

37



Topic proportions in documents
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Model Evolution of Topics over Time
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Visualizing Trends Within Topics
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Model Connections Between Topics
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Matching Words and Pictures
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Matching Words and Pictures
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Variational EM for LDA

• computing evidence p(w |α, β) is intractable, but evidence lower bound

Eq[log p(θ, z,w |α, β)]− Eq[log q(θ, z | γ, φ)]

gives lower bound on log p(w |α, β)

• plug in form of p and use family of approximate posteriors given by

q(θ, z | γ, φ) = q(θ | γ)

N∏
n=1

q(zn |φn)

where γ is a variational Dirichlet parameter and φn are variational
multinomial parameters

• variational E-step: maximize lower bound with respect to γ and φn via
alternating maximization (both simple closed form expressions)

• M-step: maximize with respect to hyperparameters α (simple numerical
method), β (closed form)
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Conclusions

• interactions of optimization and probability in machine learning

• using probabilistic structure can ease optimization

• framing probabilistic computations in variational form can help bring full
optimization toolbox to bear on wider range of problems

• can lead to fast and scalable algorithms that enable working with very
complex probabilistic models on huge datasets, beyond the reach of
other methods

• many analogies between probabilistic methods (e.g., Gibbs sampling)
and optimization-based methods (e.g., coordinate ascent)
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