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Machine learning

intersection of computer science and statistics
algorithms that learn from data and/or improve with experience
roots in Al, but also used in huge variety of other domains

draws on a number of mathematical areas, but rests in particular on
optimization theory and probability theory

by framing various tasks that don't appear to involve optimization in
that way, can bring the optimization toolbox to bear on a wider range of
problems in machine learning
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Regularized loss minimization



Regularized loss minimization

optimization-based framework for learning (parameter estimation)

minimize (w) + Ar(w)

® w € R" are the model parameters or weights
® [:R"™ — R is a loss function measuring lack of fit on training data
e r:R" — R is a regularizer measuring model complexity

® )\ > 0 is a regularization parameter trading off between the two

if [ and r are convex, problem can essentially be solved



Regularized loss minimization

many models fall under this framework, and may or may not be
probabilistic in nature

ridge regression (Tikhonov regularized linear regression)
minimize || Xw — y||3 + \|Jwl|3
lasso (sparse linear regression)
minimize || Xw — y||3 + Al|lw]1
support vector machine

minimize SN (1 — yiwT2) ¢ + A|wl|3



Regularized loss minimization

® also subsumes common ways of learning probabilistic models
® maximum likelihood estimation of model p(x)

minimize — vazl log p(z;)

— could also model y |z and maximize Y, log p(y: | i)
— includes, e.g., linear regression, generalized linear models, ...

® maximum a posteriori (MAP) estimation (finding posterior mode)

minimize — Zfil log p(x; | w) — log p(w)

— w ~ Gaussian: Tikhonov regularization
— w ~ Laplacian: ¢;/lasso regularization



Naive Bayes

® joint model that factorizes as

n
H (zi |y)

where x; are words in an email and y € {spam, ham}
® need to estimate p(y = spam) and p(x = bank | y)

® maximum likelihood estimates have a trivial closed form solution, e.g.:

# spam emails

D — Spa =
Py pam) total # emails

# times x = bank in spam mails

p(x = bank |spam) = - :
p(z |spam) # words in spam emails



Naive Bayes

once parameters are fit, want to classify new example x"%V

compute label posterior

new) _

p(y = spam|x

p(x"*"|spam) - p(spam)

ey

pick whichever class has higher posterior probability

in general, called a (probabilistic) inference problem



Gaussian discriminant analysis

® assume data comes from generative model

y ~ Bernoulli(¢)
zly=0 ~ N(u,%)
wly=1 ~ N(u,%)

i.e., data comes from one of two Gaussians chosen with a ¢-coin flip

® estimate w = (¢, ug, X) by maximizing

N
t(w) = IOng(iﬂiayi;w)
i=1
N N
= > logp(xi | yis pos 1, ) + Y log plyi; ¢)
=1

i=1



Gaussian discriminant analysis
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Maximum likelihood estimation

maximum likelihood estimates of parameters given by

b= y=1

D A g

S

. 1 Y

¥ = NZ(z—My)(xz_Mu)T

very natural interpretations:

° dg is empirical proportion of positive label in D
® (i is empirical average of x; with label k

® > is empirical covariance, with variance measured to relevant mean
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Regularized loss minimization

subsumes a very wide class of machine learning models
generative/discriminative, probabilistic/non-probabilistic, ...
sometimes problem can just be solved in closed form

sometimes need sophisticated optimization algorithms like L-BFGS,
accelerated proximal gradient method, ...

calculations, or subsequent model use, may involve probability operations
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Outline

Latent variables and the EM algorithm
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Mixture of Gaussians

probabilistic model for clustering / density estimation
consider data D = {z1,...,2N}

generative model

z ~ Multinomial(¢)
rlz=Fk ~ N(up, Xg)

i.e., each x; generated by sampling a unobserved (hidden, latent)
z; € [K] and then drawing z; from the corresponding Gaussian

presence of these latent variables is the key new wrinkle

model parameters are ¢, pg, g
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Maximum likelihood estimation

® model parameters are ¢, uk, 2k

e as usual, write down likelihood for w = (&, pk, k)
N
fw) = > logp(ai;w)
i=1

N K
= Z log Z P | 2i)p(2)
i=1

Ziil

® this function is nonconvex due to sum over values of z;

® can no longer easily solve the relevant optimization problem
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Maximum likelihood estimation

® if z; were known, problem is easy and becomes
N N
t(w) = Zlogp(l“i | z:) + Zlng(zi)
i=1 i=1
® maximizing with respect to ¢, u, % gives

N Sl =
¢J_N;[Zz_]]v MJ_ Zfil[zlzﬂ

similar expression for 3

® je, if z; were known, nearly identical to maximum likelihood estimates
in GDA (with z;'s as class labels)
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EM algorithm

idea: iteratively guess the z; and then use formulas above:

@ E-step (probability): compute p;; = p(z: = j|zi; 6, 1, 2)

® M-step (optimization): use formulas above with p;; in place of [z; = j]

E-step is an inference task: compute posterior probability of z;'s, given
data and current setting of parameters; ‘soft guesses’ for values of z;

M-step is ‘regular’ maximum likelihood estimation, but there is
uncertainty around the value of the z; and that's incorporated in

estimates

yields a ‘soft’ version of k-means for this model
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Gaussian mixture model
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Gaussian mixture model
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Gaussian mixture model
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Gaussian mixture model




Gaussian mixture model

22



Gaussian mixture model
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EM algorithm

in general, EM algorithm is standard approach to maximum likelihood
estimation with latent variable models

data D = {z1,...,zn}
want to fit model p(z, z) with z hidden

likelihood is given by

N N
U(w) = Zlogp(x; w) = Zlogzp(ﬂf, W)

often the case that maximum likelihood estimation of z would be easy if
z were known, so alternate the two steps

24



EM algorithm

® jteratively lower bound ¢, then maximize that lower bound

® for each i, let ¢; be a distribution over z's

N N
Z logp(x;) = Z log ZP(% Z;)
i=1 i=1 i
_ Zlogqu Zl Z‘L,Zz)

Z

ZZ% (2i) log x(zz))

=1 z;

v

by Jensen's inequality
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EM algorithm

previous formula gives lower bound for any g¢;; ideally, have the lower
bound be tight (inequality holds with equality) for current value of w

can show that this is the case when ¢;(2;) = p(z; | z;; w)
E-step: lower bound ¢ via computing p(z | x)
M-step: maximize this lower bound

E,[log p(z, z; w)]

with respect to w
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EM algorithm

previous motivation is as a ‘majorization-minimization’ algorithm

can also be viewed as coordinate ascent on

N

Flg,w) =Y ai(=) logw

i=1 2
E-step: maximization with respect to ¢
M-step: maximization with respect to w
(note: can also be modified for MAP estimation)

this perspective suggests/justifies many variations
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Variational inference

Outline
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Inference

comes up in several places:
® using a trained model, e.g., to predict out-of-sample outcomes
® E-step of EM for MLE in partially observed model

® Bayesian learning (work with joint model p(x, z, w) with w random)

trivial in very simple cases, but expensive or intractable in complex models

(note: in some models, like hidden Markov models or Kalman filters,
inference can be carried out exactly but requires use of an algorithm)
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Variational inference

let © be observed and z be hidden

interested in computing the posterior distribution

p(z,z) _ p(z,z)
p(x) fzp(z7x)

p(z]z) =

denominator (‘evidence') is hard to compute and makes this difficult

main idea is to pick family Q of distributions over the latent variables
indexed by variational parameters

q(z[v)

and set v via optimization to make ¢ close to p(z | x)

i.e., turn a probability problem into an optimization problem
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Variational inference

recall following lower bound from EM

log p(z) > L(q) = Eq[log p(z, z)] — Eq[log ¢(2)]
where RHS is called the evidence lower bound
here, choose a parametrized family of distributions for ¢ such that these
expectations are computable, then maximize lower bound L with respect
to these ‘variational parameters’
can show that

KL(q(2) || p(2 | z)) + L(q) = log p(z)

minimizing KL divergence is equivalent to maximizing L, plus obtain a
lower bound on log p(x)
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Mean field family

in mean field variational inference, assume that the family factorizes
m
Q(Zlv MR ] Zm) = H q(Z])
Jj=1

i.e., all variables are independent

typically, this family does not contain the true posterior because the
hidden variables are dependent (and these dependencies are what make
the posterior difficult to work with)

in ‘coordinate ascent variational inference’, iteratively optimize each
variational distribution while holding others fixed

computations end up being simple when relevant parts of original model
are exponential family distributions
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Additional topics

® variational EM
— use variational inference to compute approximate posterior p(z | ) in
E-step, i.e., do inexact maximization of I’ with respect to ¢
® variational Bayes
— parameters w are random and model is p(z, z, w)
— use lower bound

logp(z) = //p(xzyw) dz dw > Ellog p(z, z, w)] — E[log q(z, w)]

with factorized approximation ¢(z, w) = ¢(z)q(w) and do alternating
maximization w.r.t. z, w

— yields EM-like algorithm sometimes called ‘variational Bayesian EM’

¢ stochastic variational inference: use stochastic optimization to scale
optimization carried out in variational inference
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Latent Dirichlet Allocation

words are multinomial random variables w
documents are sequences of N words w = (w1, ..., wy)
topics are (multinomial) distributions over words
model document as a random mixture 6 over K latent topics
from an wunlabeled collection of documents, infer

— per-word topic assignments in each document

— per-document topic proportions
— per-corpus topic distributions
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Latent Dirichlet Allocation
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topic assignment
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Topic models

models for discovering thematic structure in document collections

NI a1 e N T

S \_} \_/ Q \_/ \_/

2 ed Z d,n I’{'rd n N I.ﬁk Ui
D K

joint distribution of topic mixture 6, topic distributions z, and words w is:

N
p(@,Z,W | avﬂ) = p(9 ‘ a) H p(zn | g)p(wn ‘ vaﬁ)

n=1

goal: fit parameters and compute posterior p(0,z|w, o, )



A 100 topic model of Science 1980-2000

sound

quantum brain computer ice
speech laser memory data climate
acoustic light human information ocean
language optical visual problem sea
sounds electron | cognitive | computers | temperature
stars research | materials fossil volcanic
universe national organic species years
galaxies science | molecules evolution fig
astronomers new molecular birds deposits
star funding polymer | evolutionary rocks
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Topic proportions in documents
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Model Evolution of Topics over Time

1880 1890 1900 1910 1920 1930 1940
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam electrical engineering room water mercury laboratory
two machine water laboratory glass laboratary rubber
machines two construction engineer gas pressure pressure
iron system engineer made made made small
battery motar room gas laboratory gas mercury
wire sngine fest tube mercury small gas
1950 1960 1970 1980 1990 2000
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber heat temperature system applications gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material

rubber control design large heat technology




Visualizing Trends Within Topics
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Model Connections Between Topics
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Candy

Sunset

People
& Fish

Matching Words and Pictures
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Matching Words and Pictures

Sy
&N )
True caption True caption True caption ‘True caption
market people scotland water bridge sky water sky tree water
Corr-LDA Corr-LDA Corr-LDA ‘Corr-LDA
people market pattern textile display scotland water flowers hills tree

sky water buildings people mountain ~ tree water sky people buildings

True caption True caption True caption True caption
birds tree fish reefs water mountain sky tree water clouds jet plane
Corr-LDA Corr-LDA Corr-LDA Corr-LDA
birds nest leaves branch tree fish water ocean tree coral

sky water tree mountain people sky planc jet mountain clouds
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Variational EM for LDA
computing evidence p(w | «, 8) is intractable, but evidence lower bound

Eyllogp(0,2, w |, B)] — Eq[log q(0,z| v, $)]

gives lower bound on logp(w | a, )

plug in form of p and use family of approximate posteriors given by

N
4(0,2|7.¢) = a(07) [ [ a(zn | dn)

n=1

where «y is a variational Dirichlet parameter and ¢,, are variational
multinomial parameters

variational E-step: maximize lower bound with respect to v and ¢,, via
alternating maximization (both simple closed form expressions)

M-step: maximize with respect to hyperparameters « (simple numerical
method), 3 (closed form)
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Conclusion

Outline
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Conclusions

interactions of optimization and probability in machine learning
using probabilistic structure can ease optimization

framing probabilistic computations in variational form can help bring full
optimization toolbox to bear on wider range of problems

can lead to fast and scalable algorithms that enable working with very
complex probabilistic models on huge datasets, beyond the reach of

other methods

many analogies between probabilistic methods (e.g., Gibbs sampling)
and optimization-based methods (e.g., coordinate ascent)
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