
A Tour of Proximal Algorithms

Neal Parikh

Cornell University

March 1, 2018

Motivation

• consider the generic convex optimization problem

minimize f(x)
subject to x ∈ C

with x ∈ Rn

• possible ‘classical’ approaches, depending on f , C, and n:

– unconstrained: gradient method, Newton method, BFGS
– constrained: projected gradient, primal-dual interior-point method

• potential issues:

– applies only to unconstrained problems
– assumes that objective is smooth
– requires a problem transformation that obscures problem structure
– does not scale beyond medium size problems
– does not easily support distributed data or parallel computation

2

Example: `1 regularization

consider the (very common) problem

minimize f(x) + λ‖x‖1

options:

• generic subgradient method

• use a transformation like

minimize s+ λ1T t
subject to f(x) ≤ s

xi ≤ ti, i = 1, . . . , n
−xi ≤ ti, i = 1, . . . , n

and then attempt to use a symmetric cone solver

– won’t work if, e.g., f involves exp or log
– obscures structure, e.g., solution is only approximately sparse

3

Goals

simple, general-purpose, non-heuristic methods for

• arbitrary-scale optimization (like learning/statistics with huge datasets)

• use problem structure to decompose problems into smaller/simpler pieces

want to obtain an exact, global solution to original convex problem

4

Distributed SVM: Iteration 1

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

5

Distributed SVM: Iteration 5

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

6

Distributed SVM: Iteration 40

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

7

This talk

interaction between three key ingredients:

1 proximal operator of a convex function

2 operator splitting algorithms

3 problem transformations

8

Structure and Regularization

Outline

`1 regularization

Examples and extensions

Proximal operators

Proximal algorithms

9

Structure in variables

• often know or assume that solution to a problem is structured, e.g.,

– convex-cardinality problems
– high-dimensional statistics: assume low-dimensional structure
– prior knowledge that variables have, e.g., hierarchical or grouped structure

• handle by solving a problem with two conceptual components:

– main objective of interest (model fit, satisfying constraints, . . .)
– regularization term that encourages assumed form of structure

• possible structure of interest includes sparsity, low rank, . . .

this talk:

1 selecting regularization to promote assumed structure

2 many examples and applications (i.e., sparsify everything in sight)

3 solving the resulting optimization problems

10

Geometric interpretation

get sparsity/structure when corners/kinks appear at sparse/structured points

e.g., quadratic cone, linear functions on prob. simplex, nuclear norm, . . .

11

Convex envelope interpretation

• convex envelope of (nonconvex) f is the largest convex underestimator g

• i.e., the best convex lower bound to a function

• example: `1 is the envelope of card (on unit `∞ ball)

• example: ‖ · ‖∗ is the envelope of rank (on unit spectral norm ball)

• various characterizations: e.g., f∗∗ or convex hull of epigraph

12

Penalty function interpretation

• compared to ridge penalty ‖ · ‖22, using `1 does two things:

1 higher emphasis on small values to go to exactly zero
2 lower emphasis on avoiding very large values

• thus useful for obtaining sparse or robust solutions to problems

13

Atomic norm interpretation
(Chandrasekaran, Recht, Parrilo, Willsky)

• convex surrogates for measures of ‘simplicity’

• suppose underlying parameter vector or signal x ∈ Rn given by

x =

k∑
i=1

ciai, ai ∈ A, ci ≥ 0,

where A is set of ‘atoms’ and k � n (d.f. � ambient dimension)

• if A is usual basis vectors, model says that x is k-sparse, and

conv(A) = unit `1 ball

• then, e.g., minimize ‖x‖1 subject to y = Fx

14

Outline

`1 regularization

Examples and extensions

Proximal operators

Proximal algorithms

15

Sparse design

• find sparse design vector x satisfying specifications

minimize ‖x‖1
subject to x ∈ C

• zero values of x simplify design or correspond to unneeded components

• when C = {x | Ax = b}, called basis pursuit or sparse coding

• e.g., find sparse representation of signal b in ‘dictionary’ or
‘overcomplete basis’ given by columns of A

16

Sparse regression

• fit b ∈ Rm as linear combination of a subset of regressors

minimize (1/2)‖Ax− b‖22 + λ‖x‖1

• zero values of x indicate features not predictive of the response

• also known as the lasso

• easily generalizes to other losses (e.g., sparse logistic regression)

17

Sparse regression

100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

original

100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

quadratic regularization

18

Sparse regression

100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

original

100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

`1 norm

19

Estimation with outliers

• measurements yi = aTi x+ vi + wi

• vi is Gaussian noise (small), w is a sparse outlier vector (big)

• if O = {i | wi 6= 0} is set of outliers, MLE given by

minimize
∑
i/∈O(yi − aTi x)2

subject to |O| ≤ k

• convex approximation given by

minimize (1/2)‖y −Ax− w‖22 + λ‖w‖1

• same idea used in support vector machine

20

Linear classifier with fewest errors

• want linear classifier b ≈ sign(aTx+ s) from (ai, bi) ∈ Rn × {−1, 1}

• error corresponds to negative margin: bi(a
T
i x+ s) ≤ 0

• find x, s that give fewest classification errors:

minimize ‖t‖1
subject to bi(a

T
i x+ s) + ti ≥ 1, i = 1, . . .m

with variables x, s, t

• close to a support vector machine

• can generalize to other convex feasibility problems

21

Elastic net
(Zou & Hastie)

• problem:
minimize f(x) + λ‖x‖1 + (1− λ)‖x‖22

i.e., use both ridge and lasso penalties

• attempts to overcome the following potential drawbacks of the lasso:

– lasso selects at most (# examples) variables
– given group of very correlated features, lasso often picks one arbitrarily

• here, strongly correlated predictors are jointly included or not

• (in practice, need to do some rescaling above)

22

Fused lasso
(Tibshirani et al.; Rudin, Osher, Fatemi)

• problem:

minimize f(x) + λ1‖x‖1 + λ2
∑n
j=2 |xj − xj−1|

i.e., encourage x to be both sparse and piecewise constant

• special case: total variation denoising (set λ1 = 0)

• used in biology (e.g., gene expression) and signal reconstruction

• can also write penalty as ‖Dx‖1; could consider other matrices

23

Total variation denoising

5

10

15

20

25

30

0

5

10

15

20

25

30

35

−0.5

0

0.5

1

1.5

original

5

10

15

20

25

30

0

5

10

15

20

25

30

35

−0.5

0

0.5

1

1.5

l2−norm

120 linear measurements and 31× 31 = 961 variables (‘8x undersampled’)

24

Total variation denoising

5

10

15

20

25

30

0

5

10

15

20

25

30

35

−0.5

0

0.5

1

1.5

original

5

10

15

20

25

30

0

5

10

15

20

25

30

35

−0.5

0

0.5

1

1.5

l1−norm

120 linear measurements and 31× 31 = 961 variables (‘8x undersampled’)

25

Group lasso
(e.g., Yuan & Lin; Meier, van de Geer, Bühlmann; Jacob, Obozinski, Vert)

• problem:
minimize f(x) + λ

∑N
i=1 ‖xi‖2

i.e., like lasso, but require groups of variables to be zero or not

• also called `1,2 mixed norm regularization

• related to multiple kernel learning via duality (see Bach et al.)

26

Joint covariate selection for multi-task learning
(Obozinski, Taskar, Jordan)

• want to fit parameters xk ∈ Rp for each of multiple datasets Dk

• either use feature j in all tasks or none of them

• let xj = (x1j , . . . , x
K
j) for j = 1, . . . , p

• problem:
minimize

∑K
k=1 f

k(xk) + λ
∑p
j=1 ‖xj‖2

with variables x1, . . . , xK ∈ Rp

27

Structured group lasso
(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; . . .)

• problem:
minimize f(x) +

∑N
i=1 λi‖xgi‖2

where gi ⊆ [n] and G = {g1, . . . , gN}

• like group lasso, but the groups can overlap arbitrarily

• particular choices of groups can impose ‘structured’ sparsity

• e.g., topic models, selecting interaction terms for (graphical) models,
tree structure of gene networks, fMRI data

• generalizes to the composite absolute penalties family:

r(x) = ‖(‖xg1‖p1 , . . . , ‖xgN ‖pN)‖p0

28

Structured group lasso
(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; . . .)

contiguous selection:

• G = {{1}, {5}, {1, 2}, {4, 5}, {1, 2, 3}, {3, 4, 5}, {1, 2, 3, 4}, {2, 3, 4, 5}}

• nonzero variables are contiguous in x, e.g., x? = (0, ∗, ∗, 0, 0)

• can extend the same idea to higher dimensions (e.g., select rectangles)

• e.g., time series, tumor diagnosis, . . .

29

Structured group lasso
(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; . . .)

hierarchical selection:

1

2 3

4 5 6

• G = {{4}, {5}, {6}, {2, 4}, {3, 5, 6}, {1, 2, 3, 4, 5, 6}}

• nonzero variables form a rooted and connected subtree

– if node is selected, so are its ancestors
– if node is not selected, neither are its descendants

30

Matrix decomposition

• problem:
minimize f1(X1) + · · ·+ fN (XN)
subject to X1 + · · ·+XN = A

• many choices for the fi:

– squared Frobenius norm (least squares)
– entrywise `1 norm (sparse matrix)
– nuclear norm (low rank)
– sum-{row,column}-norm (group lasso)
– elementwise constraints (fixed sparsity pattern, nonnegative, . . .)
– semidefinite cone constraint

31

Low rank matrix completion
(Candès & Recht; Recht, Fazel, Parrilo)

• problem:
minimize ‖X‖∗
subject to Xij = Aij , (i, j) ∈ D

i.e., find low rank matrix that agrees with observed entries

• e.g., Netflix problem

32

Robust PCA
(Candès et al.; Chandrasekaran et al.)

• regular PCA is the (nonconvex but solvable) problem

minimize ‖A− L‖2
subject to rank(L) ≤ k

i.e., recover rank k matrix L0 if A = L0 +N0, where N0 is noise

• if matrix also has some sparse but large noise, instead solve

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = A

i.e., recover low rank L and sparse corruption S if A = L0 + S0 +N0

• sparse + low rank decomposition has other applications (e.g., vision,
video segmentation, background subtraction, biology, indexing)

33

Robust PCA
(Candès et al.; Chandrasekaran et al.)

34

Outline

`1 regularization

Examples and extensions

Proximal operators

Proximal algorithms

35

Proximal operator
(Martinet; Moreau; Rockafellar)

• proximal operator of f : Rn → R ∪ {+∞} is

proxλf (v) = argmin
x

(
f(x) + (1/2λ)‖x− v‖22

)
with parameter λ > 0

• f may be nonsmooth, have embedded constraints, . . .

• can evaluate with standard methods like BFGS, but often has an
analytical solution or simple specialized linear-time algorithm

• many interpretations

• example: proximal operator of IC is ΠC (generalized projection)

36

Polyhedra

• projection onto polyhedron C = {x | Ax = b, Cx ≤ d} is a QP

• projection onto affine set C = {x | Ax = b} is a linear operator

• box or hyperrectangle C = {x | l � x � u}:

(ΠC(v))k =


lk vk ≤ lk
vk lk ≤ vk ≤ uk
uk vk ≥ uk,

• also simple methods for hyperplanes, halfspaces, simplexes, . . .

37

Quadratic functions

• if f(x) = (1/2)xTPx+ qTx+ r, then

proxλf (v) = (I + λP)−1(v − λq)

• if evaluating repeatedly with different arguments v:

– dense direct method: O(n3) flops first time and then O(n2)

– iterative method (CG, LSQR, . . .): warm start beginning at v

38

Moreau envelope

• Moreau envelope or Moreau-Yosida regularization of f is

Mλf (v) = inf
x

(
f(x) + (1/2λ)‖x− v‖22

)
• a smoothed or regularized form of f :

– always has full domain
– always continuously differentiable
– has the same minimizers as f

• proximal operator is gradient step for Moreau envelope:

proxλf (x) = x− λ∇Mλf (x)

39

Moreau envelope

• motivation: in general, ϕ∗ is smooth when ϕ is strongly convex

• can show that
Mf = (f∗ + (1/2)‖ · ‖22)∗

so Moreau envelope obtains a smooth approximation via

1 taking conjugate
2 regularizing to get a strongly convex function
3 taking conjugate again

• example: Moreau envelope of | · | is the Huber loss function

40

Moreau envelope: Huber loss

41

Moreau decomposition

• following relation always holds:

v = proxf (v) + proxf∗(v)

• main link between proximal operators and duality

• a generalization of orthogonal decomposition induced by subspace L:

v = ΠL(v) + ΠL⊥(v)

follows from Moreau decomposition and (IL)∗ = IL⊥

42

Norms and norm balls

• in general: if f = ‖ · ‖ and B is unit ball of dual norm, then

proxλf (v) = v − λΠB(v/λ)

• if f = ‖ · ‖2 and B is the unit `2 ball, then

ΠB(v) =

{
v/‖v‖2 ‖v‖2 > 1

v ‖v‖2 ≤ 1

proxλf (v) =

{
(1− λ/‖v‖2)v ‖v‖2 ≥ λ
0 ‖v‖2 < λ

sometimes called ‘block soft thresholding’ operator

43

Norms and norm balls

• if f = ‖ · ‖1 and B is the unit `∞ ball, then

(ΠB(v))i =


1 vi > 1

vi |vi| ≤ 1

−1 vi < −1

lets us derive (elementwise) soft thresholding

proxλf (v) = (v − λ)+ − (−v − λ)+ =


vi − λ vi ≥ λ
0 |vi| ≤ λ
vi + λ vi ≤ −λ

• if f = ‖ · ‖∞ and B is unit `1 ball, simple algorithms available

44

Soft thresholding

45

Matrix functions

• suppose convex F : Rm×n → R is orthogonally invariant:

F (QXQ̃) = F (X)

for all orthogonal Q, Q̃

• then F = f ◦ σ and

proxλF (A) = U diag(proxλf (d))V T

where A = U diag(d)V T is the SVD of A and σ(A) = d

• e.g., F = ‖ · ‖∗ has f = ‖ · ‖1 so proxλF is ‘singular value thresholding’

46

Outline

`1 regularization

Examples and extensions

Proximal operators

Proximal algorithms

47

Proximal gradient method
(e.g., Levitin & Polyak; Mercier; Chen & Rockafellar; Combettes; Tseng)

• problem form
minimize f(x) + g(x)

where f is smooth and g : Rn → R ∪ {+∞} is closed proper convex

• method:
xk+1 := proxλkg(x

k − λk∇f(xk))

• special case: projected gradient method (take g = IC)

48

Accelerated proximal gradient method
(Nesterov; Beck & Teboulle; Tseng)

• problem form
minimize f(x) + g(x)

where f is smooth and g : Rn → R ∪ {+∞} is closed proper convex

• method:

yk+1 := xk + ωk
(
xk − xk−1

)
xk+1 := proxλkg

(
yk+1 − λk∇f(yk+1)

)
works for, e.g., ωk = k/(k + 3) and particular λk

• faster in both theory and practice

49

ADMM
(e.g., Gabay & Mercier; Glowinski & Marrocco; Boyd et al.)

• problem form
minimize f(x) + g(x)

where f, g : Rn → R ∪ {+∞} are closed proper convex

• method:

xk+1 := proxλf (zk − uk)

zk+1 := proxλg(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1

• basically, always works

50

Examples

• (accelerated) proximal gradient for elastic net:

1 gradient step for smooth loss (e.g., logistic, least squares, . . .)
2 shrinkage and elementwise soft thresholding

• ADMM for multi-task learning with joint covariate selection:

1 evaluate proxfk (in parallel for each dataset)
2 block soft thresholding (in parallel for each feature)
3 dual update

• ADMM for robust PCA:

1 singular value thresholding
2 elementwise soft thresholding
3 dual update

51

Distributed Optimization and
Statistical Learning

Goals

simple and robust methods for

• arbitrary-scale optimization

– machine learning/statistics with huge datasets

• decentralized optimization

– have devices/agents coordinate to solve problems by message passing

52

Distributed SVM: Iteration 1

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

53

Distributed SVM: Iteration 5

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

54

Distributed SVM: Iteration 40

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

55

Outline

Operator splitting

Applications

Block splitting

Conclusions

56

Operator splitting

• the most useful proximal methods use the idea of operator splitting

• these algorithms minimize f + g only using proxf and/or proxg

• useful when f and g each have useful structure separately

• very common in statistical applications: loss + regularizer

• transform problem (if needed) so when an operator splitting method is
applied, breaks apart into small pieces with simple proximal operators

57

Separable sum

• if f is block separable, so f(x) =
∑N
i=1 fi(xi), then

(proxf (v))i = proxfi(vi), i = 1, . . . , N

• key to parallel/distributed proximal algorithms

• for f = ‖ · ‖1, get soft thresholding

proxλf (v) = (v − λ)+ − (−v − λ)+ =


vi − λ vi ≥ λ
0 |vi| ≤ λ
vi + λ vi ≤ −λ

58

ADMM
(Douglas-Rachford 55, Gabay-Mercier 76, Glowinski-Marrocco 76)

minimize f(x) + g(x)

f, g : Rn → R ∪ {+∞} are closed proper convex

• method:

xk+1 := proxλf (zk − uk)

zk+1 := proxλg(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1

• always converges (if problem is solvable)

59

Outline

Operator splitting

Applications

Block splitting

Conclusions

60

Convex feasibility

• problem:
find x ∈ C ∩ D

• rewrite as
minimize IC(x) + ID(x)

• ADMM:

xk+1 := ΠC(z
k − uk)

zk+1 := ΠD(xk+1 + uk)

uk+1 := uk + xk+1 − zk+1

61

Positive semidefinite matrix completion

• given A ∈ Sn with (i, j) ∈ K known, fill in missing entries so in Sn+

• splitting:
C = Sn+, D = {X | Xij = Aij , (i, j) ∈ K}

• projection onto C: find eigendecomposition X =
∑
i αiviv

T
i , then

ΠC =

n∑
i=1

max{0, αi}vivTi

• projection onto D sets entries to known values

62

Positive semidefinite matrix completion

20 40 60 80 100

10
−4

10
−2

10
0

10
2

k

d
is

t

• example with 50× 50 matrix missing half its entries

• blue: alternating projections; red: ADMM

• Xk ∈ C, Zk ∈ D
63

Lasso

• to minimize (1/2)‖Ax− b‖22 + γ‖x‖1:

xk+1 := (I + λATA)−1(zk − uk − λAT b)

zk+1 := proxλγ‖·‖1(xk+1 + uk)

uk+1 := uk + xk+1 − zk+1

• faster implementations:

– matrix inversion lemma

– factorization caching

– warm start

– adjusting λ

• easily generalizes, e.g., sparse inverse covariance selection

64

Global consensus optimization

• minimize f(x) =
∑N
i=1 fi(x); e.g., fi is loss for ith shard of data

• handle each shard separately via splitting

minimize
∑N
i=1 fi(xi) + IC(x1, . . . , xN)

with consensus set C = {(x1, . . . , xN) ∈ RnN | x1 = x2 = · · · = xN}

• ADMM simplifies to

xk+1
i := proxfi(x

k − uki)

uk+1
i := uki + xk+1

i − xk+1

• intuition: ui measures deviation from average, proximal penalty balances
minimizing fi while pulling towards average

65

Distributed lasso via consensus optimization

xk+1
i := (I + λATi Ai)

−1(zk − uki − λATi b)

zk+1 := prox(λγ/N)‖·‖1(xk+1 + uk)

uk+1
i := uki + xk+1

i − zk+1

66

Distributed global consensus optimization with MPI

initialize N processes, along with xi, ui, z.

repeat until converged

1. Update ui := ui + xi − z.
2. Update xi := proxλfi(z − ui).
3. Let w := xi + ui.
4. Allreduce w.
5. Update z := prox(λ/N)g(w/N).

(SPMD: code runs on each separate machine, so i refers to ‘local’ version)

67

Distributed lasso example

• example with dense A ∈ R400000×8000 (roughly 30 GB of data)

– distributed solver written in C using MPI and GSL
– no optimization or tuned libraries
– split into 80 subsystems across 10 (8-core) machines on Amazon EC2

• computation times

loading data 30s

factorization 5m

subsequent ADMM iterations 0.5–2s

lasso solve (about 15 ADMM iterations) 5–6m

68

Matrix decomposition

• decompose matrix A into sum of ‘simple’ components:

minimize f1(X1) + f2(X2) + · · ·+ fN (XN)
subject to A = X1 +X2 + · · ·+XN

• penalty functions can include

– squared Frobenius norm
– entrywise `1 norm
– sum-{row,column} norm
– indicator of elementwise constraints
– indicator of semidefinite cone
– nuclear norm

69

Matrix decomposition via ADMM

• splitting:
minimize

∑N
i=1 fi(Xi) + IC(X1, . . . , XN)

with equilibrium set C = {(X1, . . . , XN) | A = X1 + · · ·+XN}

• ADMM simplifies to:

Xk+1
i := proxλfi(X

k
i −X

k
+ (1/N)A− Uk)

Uk+1 := Uk +X
k+1 − (1/N)A

70

Matrix decomposition results

problem: decompose A = rank 4 + sparse + small Gaussian noise

Method m n Iterations Time (s)

CVX 10 30 15 1.11
ADMM 10 30 45 0.02

CVX 20 50 17 2.54
ADMM 20 50 42 0.03

CVX 40 80 20 108.14
ADMM 40 80 36 0.07

ADMM 100 200 38 0.58

ADMM 500 1000 42 35.56

note: last instance has 1.5M variables and 500K constraints

71

Outline

Operator splitting

Applications

Block splitting

Conclusions

72

Graph form problems

• graph form problem:

minimize f(y) + g(x)
subject to y = Ax

where A ∈ Rm×n, f : Rm → R ∪ {+∞}, g : Rn → R ∪ {+∞}

• x and y must lie in the graph {(x, y) ∈ Rm+n | y = Ax} of A

• refer to x as ‘inputs’ and y as ‘outputs’

• f and g can encode constraints

73

Example: cone programming

• cone program in standard form:

minimize cTx
subject to Ax = b

x ∈ K

where K is a convex cone

• in graph form, let

f(y) = I{b}(y), g(x) = cTx+ IK(x)

where IC is the indicator function of the convex set C

• e.g., symmetric cone program when K is a product of Rn+, Qn, Sn+

74

Example: loss minimization

• many statistics/ML problems take the form

minimize l(Ax− b) + r(x)

• in graph form, let

f(y) = l(y − b), g(x) = r(x)

• e.g., obtain the lasso with l(u) = (1/2)‖u‖22 and r(v) = γ‖v‖1

• can similarly express linear SVM, MLE/MAP in exponential families, . . .

75

ADMM

• consider generic constrained convex program

minimize f(z)
subject to z ∈ C

• ADMM:

zk+1/2 := proxf (zk − z̃k) // prox

zk+1 := ΠC(z
k+1/2 + z̃k) // projection

z̃k+1 := z̃k + zk+1/2 − zk+1 // dual update

• converges under very general conditions

76

Graph projection splitting

• applying this form of ADMM to graph form problem gives

xk+1/2 := proxg(x
k − x̃k)

yk+1/2 := proxf (yk − ỹk)

(xk+1, yk+1) := ΠA(xk+1/2 + x̃k, yk+1/2 + ỹk)

x̃k+1 := x̃k + xk+1/2 − xk+1

ỹk+1 := ỹk + yk+1/2 − yk+1

• ΠA is called graph projection and denotes projection onto graph of A

• important: f and g never interact directly with A, i.e., ΠA is the only
operation that touches the data

77

Graph projection

• evaluating ΠA(c, d) involves solving

minimize (1/2)‖x− c‖22 + (1/2)‖y − d‖22
subject to y = Ax

• reduce to solving (quasidefinite) KKT system[
I AT

A −I

] [
x
y

]
=

[
c+AT d

0

]

78

Implementing graph projections

• eliminate x, then solve for y

y := (I +AAT)−1(Ac+AAT d)
x := c+AT (d− y)

• eliminate y, then solve for x

x := (I +ATA)−1(c+AT d)
y := Ax

• when A is dense, prefer first when A is fat and second when A is skinny

• factor the relevant coefficient matrix with, e.g., Cholesky factorization

• see paper for more on other situations (e.g., sparse A)

• key point: does not depend on λ, f , g

79

Example

• graph projection splitting algorithm for the lasso:

xk+1/2 := proxλγ‖·‖1(xk − x̃k)

yk+1/2 := (1/(1 + λ))(yk − ỹk)

(xk+1, yk+1) := ΠA(xk+1/2 + x̃k, yk+1/2 + ỹk)

x̃k+1 := x̃k + xk+1/2 − xk+1

ỹk+1 := ỹk + yk+1/2 − yk+1

• here, all operations are trivial except for ΠA

• cache factorization needed to evaluate ΠA and reuse after first iteration

• regularization path: reuse across solves, varying γ

• model comparison: reuse across solves, varying f or g

80

Sample implementation: lasso

prox_f = @(v,lambda) (1/(1 + lambda))*(v - b) + b;

prox_g = @(v,lambda) (max(0, v - lambda) - max(0, -v - lambda));

AA = A*A’;

L = chol(eye(m) + AA);

for iter = 1:MAX_ITER

xx = prox_g(xz - xt, lambda);

yx = prox_f(yz - yt, lambda);

yz = L \ (L’ \ (A*(xx + xt) + AA*(yx + yt)));

xz = xx + xt + A’*(yx + yt - yz);

xt = xt + xx - xz;

yt = yt + yx - yz;

end

81

Numerical example: regularization path for lasso

• dense A ∈ R5000×8000

• 10 values of γ, log spaced from 0.01γmax to γmax

• solve all instances in 23 sec total, vs 72 sec if not sharing cache across
problem instances

• (by comparison, solving one instance with CVX takes 2 minutes)

82

Block splitting

• now turn to distributed setting

• approach:

1 express graph form problems using blocks

2 use problem transformation

3 apply version of ADMM given earlier

4 simplify algorithm

83

Block partitioned form

• suppose f and g are block separable, i.e.

f(y) =

M∑
i=1

fi(yi), g(x) =

N∑
j=1

gj(xj),

where yi ∈ Rmi , xj ∈ Rnj

• partition A conformably

A =


A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AM1 AM2 · · · AMN



84

Graph form problems

• graph form problem can then be expressed as

minimize
∑M
i=1 fi(yi) +

∑N
j=1 gj(xj)

subject to yi =
∑N
j=1Aijxj , i = 1, . . . ,M

• M = 1 called column (feature) splitting

• N = 1 called row (data) splitting

• goal is to solve this in a way that allows each block Aij to be handled by
a separate process or machine

85

Example: loss minimization

• row splitting corresponds to splitting by data

• column splitting corresponds to splitting by features

• loss l is typically fully separable

• regularizer r is often separable and sometimes block separable (e.g.,
group lasso or sum-of-norms regularization)

86

Problem transformation

• introduce additional variables

minimize
∑M
i=1 fi(yi) +

∑N
j=1 gj(xj)

subject to xij = xj , i = 1, . . . ,M

yi =
∑N
j=1 yij , i = 1, . . . ,M

yij = Aijxij , i = 1, . . . ,M, j = 1, . . . , N

• move some constraints into the objective

minimize
∑M
i=1 fi(yi) +

∑N
j=1 gj(xj) +

∑M
i=1

∑N
j=1 Iij(yij , xij)

subject to xij = xj
yi =

∑M
j=1 yij

• now apply ADMM and simplify

87

Block splitting algorithm

y
k+1/2
i := proxli(y

k
i − ỹki)

x
k+1/2
j := proxrj (xkj − x̃kj)

(y
k+1/2
ij , x

k+1/2
ij) := Πij(y

k
ij + ỹki , x

k
j − x̃kij)

xk+1
j := avg(x

k+1/2
j , {xk+1/2

ij }Mi=1)

(yk+1
i , {yk+1

ij }
N
j=1) := exch(y

k+1/2
i , {yk+1/2

ij }Nj=1)

x̃k+1
j := x̃kj + x

k+1/2
j − xk+1

j

ỹk+1
i := ỹki + y

k+1/2
i − yk+1

i

x̃k+1
ij := x̃kij + x

k+1/2
ij − xk+1

j

where exch(c, {cj}Nj=1) is given by

yk+1
ij := cj + (c−

∑N
j=1 cj)/(N + 1), yk+1

i := c− (c−
∑N
j=1 cj)/(N + 1)

88

Computation: prox, Πij, dual updates

89

Computation: consensus (avg)

90

Computation: exchange (exch)

91

Distributed lasso

• examples with dense Aij ∈ R3000×5000

– distributed solver written in C using MPI and GSL (ATLAS)
– run on Amazon EC2 cluster compute nodes

• computation times (all times in seconds)

M ×N 4× 2 8× 5 8× 10

nonzero entries 120MM 600MM 1.2B

cores 8 40 80

factorization time 15 15 15

iteration time 0.05–0.15 0.05–0.15 0.05–0.15

iterations 90 230 490

main loop time 10 27 60

total time 28 50 80

92

Outline

Operator splitting

Applications

Block splitting

Conclusions

93

Summary and conclusions

• coordinate many processors, each solving a substantial problem, to solve
a very large problem

• split by data, features, or both

• yields algorithms that are easy to implement (just supply prox operators)

94

Summary and conclusions

interaction between three key ingredients:

1 proximal operator of a convex function

2 operator splitting algorithms

3 problem transformations

95

References

• Proximal algorithms (Parikh, Boyd)

• Distributed optimization and statistical learning via the alternating
direction method of multipliers (Boyd, Parikh, Chu, Peleato, Eckstein)

• Block splitting for distributed optimization (Parikh, Boyd)

available from nparikh.org or stanford.edu/~boyd

96

nparikh.org
stanford.edu/~boyd

	Structure and Regularization
	1 regularization
	Examples and extensions
	Proximal operators
	Proximal algorithms

	Distributed Optimization and Statistical Learning
	Operator splitting
	Applications
	Block splitting
	Conclusions

